
Ma boîte à outils

&

A. Numérique

1. Nombres

- 1. Nombres Entiers, Décimaux, Comparaison
- 2. Nombres Relatifs
- 3. Puissances
- 4. Racines Carrées

2. Opérations

- 1. Techniques Opératoires
- 2. Les Quatre Opérations
- 3. Enchainements et Priorités d'Opérations
- 4. Fractions
- 5. PGCD et PPCM

3. Equations

- 1. Calcul Littéral Développements et Factorisations
- 2. Identités Remarquables
- 3. Equations
- 4. Inéquations
- 5. Systèmes d'Equations

4. Fonctions et Proportionnalité

- 0. Pré-requis : Calculs de proportionnalité
- 1. Proportionnalité
- 2. Distances et Repères
- 3. Notion de fonction
- 4. Fonctions Linéaires
- 5. Fonctions Affines

5. Statistiques

- 1. Organisation de données
- 2. Statistiques et Probabilités

B. Géométrie

1. Eléments usuels

- 1. Eléments de géométrie : Notations et Définitions
- 2. Droites
- 3. Polygones
- 4. Parallélogrammes

2. Transformations

- 0. Pré-requis : La Médiatrice
- 1. Symétries Axiale et Centrale
- 2. Axes et Centres de Symétrie
- 3. Agrandissements et Réductions

3. Angles et Triangles

- 1. Anales
- 2. Triangles
- 3. Pythagore et Thalès
- 4. Trigonométrie
- 5. Angles inscrits et au centre

4. Longueurs et Surfaces

- 1. Mesures Unités et Convertions
- 2. FORMUL' Aires et Périmètres
- 3. Sections par un plan

5. Espace

- 1. Solides et Patrons
- 2. Prismes et Cylindres
- 3. Pyramides et Cônes
- 4. Sphères et Boules

LES MATHS FACILES:

MA BOITE A OUTILS MATHS-COLLEGE

TABLES DE MULTIPLICATION

Numerioue

COMPLEMENT.

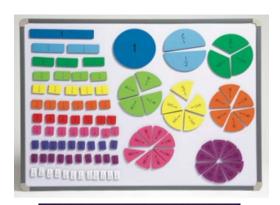
0)	X	0	=	0
0)	Х	1	=	0
0)	Х	2	=	0
0)	X	3	=	0
0	1	Х	4	=	0
0	,	Х	5	=	0
0)	X	6	=	0
0)	х	7	=	0
0		×	8	=	0

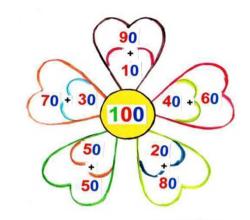
 $0 \times 9 = 0$

 $0 \times 10 = 0$

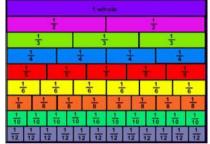
7	х	0	=	0
7	х	1	=	7
7	х	2	=	14
7	х	3	=	21
7	х	4	=	28
7	х	5	=	35
7	х	6	=	42
7	х	7	=	49
7	х	8	=	56
7	х	9	=	63
7	х	10	=	70

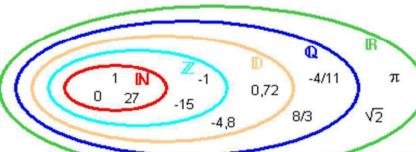
7 : 7 : 7 : 7 : 7 : 7 : 7	x 6 x 7 x 8	= 2 = 3 = 2 = 2 = 5 = 6	28 35 42 49 56	
11 11 11 11 11 11 11 11	x 3 x 4 x 5 x 6 x 7 x 8	= 2 = 3 = 5 = 7 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3	0 11 22 33 44 55 66 77 88 99	


X	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	12	14	16	18	20
3	0	3	6	9	12	15	18	21	24	27	30
4	0	4	8	12	16	20	24	28	32	36	40
5	0	5	10	15	20	25	30	35	40	45	50
6	0	6	12	18	24	30	36	42	48	54	60
7	0	7	14	21	28	35	42	49	56	63	70
8	0	8	16	24	32	40	48	56	64	72	80
9	0	9	18	27	36	45	54	63	72	81	90
10	0	10	20	30	40	50	60	70	80	90	100


4	х	0	=	0
4	х	1	=	4
4	х	2	=	8
4	х	3	=	12
4	х	4	=	16
4	х	5	=	20
4	х	6	=	24
4	х	7	=	28
4	х	8	=	32
4	Х	9	=	36
4	х	10	=	40

 $6 \times 0 = 0$


 $6 \times 1 = 6$


8	Х	0	=	0		9	Х	0	=	0
8	Х	1	=	8		9	Х	1	=	9
8	х	2	=	16		9	х	2	=	18
8	Х	3	=	24		9	Х	3	= 1	27
8	Х	4	=	32		9	х	4	= 1	36
8	х	5	=	40		9	х	5	= .	45
8	Х	6	=	48		9	х	6	=	54
8	Х	7	=	56		9	Х	7	=	63
8	Х	8	=	64		9	х	8	=	72
8	х	9	=	72		9	х	9	=	81
8	Х	10	=	80		9	Х	10	=	90

Pa	rtie enti	ère			Partie o	décimale		
	dizaines	unités	dixièmes	centièmes	millièmes	dix-millièmes	cent-millièmes	
	3	7	1	6	8	4	9	
	3	7	1	6	8	6		
	mê par enti	tie	même chiffre	même chiffre	même chiffre	STOP 4<6		nverse

Ecriture des grands nombres :

1 + 105 = 10-5

10⁵ = 100000

c'est un 1 suivi de 5 zéros

PRODUIT DE PUISSANCES :

 $a^m \times a^n = a^{m+n}$

QUOTIENT DE PUISSANCES: $\frac{a^m}{a^n} = a^{m-n}$

PUISSANCE DE PUISSANCES

$$\left(a^{m}\right)^{n}=a^{m\times n}$$

$$(ab)^m = a^m \times b^m$$
 et $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

NOMBRES ENTIERS, DECIMAUX, COMPARAISON

Nombres entiers naturels : nombres que l'on peut trouver dans la nature (que l'on peut compter avec ses doigts).

Ex: Un troupeau de 200 moutons OU Un tas de 1347 cailloux

Chiffres et Nombres :

0, 1, 2, 3, 4, 5, 6, 7, 8 et 9 sont les dix chiffres qui permettent d'écrire tous les nombres (de même que les lettres de A à Z permettent d'écrire tous les mots).

Ex: 1 054 est un nombre entier de 4 chiffres.

7 est un nombre entier d'un seul chiffre.

Pour pouvoir lire un grand nombre entier facilement, on regroupe ses chiffres par tranches de 3 en partant de la droite, puis on peut s'aider d'un tableau.

Ex: 1049658723 s'écrit 1 049 658 723 et se lit un milliard quarante-neuf millions six cent cinquante-huit mille sept cent vingt-trois.

Classe	e des mil	liards	Class	e des mi	llions	(Classe des Classe des milliers unités			S	
С	D	U	С	D	U	С	D	U	Centaines	Dizaines	Unités
		1	0	4	9	6	5	8	7	2	3

Décomposition

1 049 658 723 =

 $1 \times 1\ 000\ 000\ 000$ 1 est le chiffre des unités de milliards + $0 \times 100\ 000\ 000$ 0 est le chiffre des centaines de millions + $4 \times 10\ 000\ 000$ 4 est le chiffre des dizaines de millions + $9 \times 1\ 000\ 000$ 9 est le chiffre des unités de millions + $6 \times 100\ 000$ 6 est le chiffre des centaines de mille + $5 \times 10\ 000$ 5 est le chiffre des dizaines de mille + $8 \times 1\ 000$ 8 est le chiffre des unités de mille + 7×100 7 est le chiffre des centaines + 2×10 2 est le chiffre des dizaines

 $+3\times1$ 3 est le chiffre des **unités**

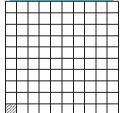
Nombre décimal : a un nombre fini de chiffres après la virgule. Il a une partie entière et une partie décimale.

Partie entière Partie décimale

	Partie	décima	ale
Partie entière	Dixièmes	Centièmes	Millièmes
1 3 4 5,	7	8	9

Un nombre décimal est entier lorsque sa partie décimale est nulle. Un nombre entier est un nombre décimal.

 $\overline{\text{Ex}}$: 73 = 73,0 = 73,00 est un nombre entier et décimal.


Les dixièmes

Quand on coupe une unité en 10 parties égales, on obtient des dixièmes.

Un dixième se note : $\frac{1}{10}$.

Dans l'unité, il y a 10 dixièmes donc : $1 = \frac{10}{10}$.

Quand on coupe une unité en 100 parties égales, on obtient des centièmes.

Un centième se note : $\frac{1}{100}$.

Dans l'unité, il y a 100 centièmes donc : $1 = \frac{100}{100}$.

Décomposition en fractions décimales

1345 , 789 partie entière décimal

7 est le chiffre des dixièmes (! 4 est le chiffre des dizaines), 8 est le chiffre des centièmes, 9 est le chiffre des millièmes.

$$= (1 \times 1000) + (3 \times 100) + (4 \times 10) + (5 \times 1) + (7 \times \frac{1}{10}) + (8 \times \frac{1}{100}) + (9 \times \frac{1}{1000})$$

NOMBRES ENTIERS, DECIMAUX, COMPARAISON

MULTIPLES ET SOUS-MULTIPLES DE 10

Multiplier et Diviser par 10 100 1000 ...

Règle de calcul:

• Multiplier par 10, 100 ou 1000 revient à déplacer la virgule vers la droite d'autant de rang(s) que de zéro(s), en plaçant un ou des zéros si nécessaire.

Règle de calcul :

• Diviser par 10, 100 ou 1000 revient à déplacer la virgule vers la gauche d'autant de rang(s) que de zéro(s), en plaçant un ou des zéros si nécessaire.

Exemples

18,53 x 10	=	185,3	27	,49	: 10	=	2,749
18,53 x 100	= 1	853	27	,49	: 100	=	0,274 9
18,53 x 1000) = 18	530	27	,49	: 1000	=	0,027 49

Multiplier et Diviser par 0,1 0,01 0,001 ...

Règles de calcul:

Multiplier par	0,1	c'est diviser par	10
Multiplier par	0,01	c'est diviser par	100
Multiplier par	0,001	c'est diviser par	1 000
Multiplier par	0,0001	c'est diviser par	10 000
		•	etc
Diviser par	0,1	c'est multiplier par	10
Diviser par	0,01	c'est multiplier par	100
Diviser par	0,001	c'est multiplier par	1 000
Diviser par	0,0001	c'est multiplier par	10 000
•			etc

Exemples

18,53:0,1	$= 18,53 \times 10$	=	185,3	27,49 x 0,1	= 27,49:10	=	2,749
18,53:0,01	$= 18,53 \times 100$	= 1	853	27,49 x 0,01	= 27,49 : 100	=	0,274 9
18.53: 0.001	$= 18.53 \times 1000$	= 18	530	27,49 x 0,001	= 27.49 : 1000) =	0.027 49

Comment ordonner des nombres décimaux ?

COMPARAISON ET ENCADREMENT

Pour comparer : On regarde les chiffres de même rang de gauche à droite.

<u>Ex</u> pour 12,57 et 12,563 12,57

12,563 7 > 6 donc 12,57 > 12,563

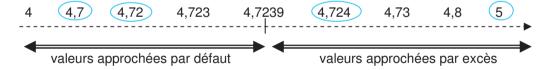
Pour encadrer: On utilise un nombre plus petit et un nombre plus grand.

12,56 < 12, 563 < 12,57 12 < 12, 563 < 13 => encadrement au centième près

=> encadrement à l'unité près

(c'est-à-dire entre deux entiers consécutifs)

Ordre <u>croissant</u>: du plus petit au plus grand. Ordre décroissant: du plus grand au plus petit.


<	se lit "plus petit que"	>	se lit "plus grand que"
	ou "inférieur à".		ou "supérieur à".
≤	se lit "inférieur ou égal à".	≥	se lit "supérieur ou égal à".
Ev	9.0 . 11 4.56 456		15.0 > 15.10

 $\underline{\text{Ex}}$ 8,9 < 11 4,56 = $\frac{456}{100}$ 15,2 \geq 15,19

APPROXIMATIONS DECIMALES

Valeurs approchées

A l'unité (nombre entier), au dixième (un chiffre après la virgule), au centième (deux chiffres après la virgule) ...etc...

<u>Troncature (= valeur approchée par défaut)</u>

On 'coupe' le nombre pour donner une valeur approchée.

 \underline{Ex} au centième => on 'coupe' après le chiffre des centièmes.

4,72 \ 39

Arrondi

=> valeur approchée la plus proche du nombre (par défaut ou par excès)

Ex Arrondi au dixième d'un nombre : on regarde le chiffre des centièmes - si ce chiffre est 0: 1: 2: 3: 4 => on garde le chiffre des dixièmes (VA par défaut).

- si de chilire est U; 1; 2; 3; 4 => on garde le chilire des dixièmes (VA par dela
- si ce chiffre est 5; 6; 7; 8; 9 => on l'augmente de un dixième (VA par excès).

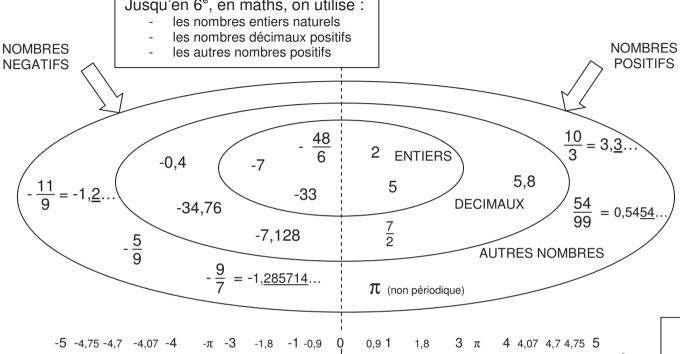
Ex Arrondi au centième de 4,7239 : 4,72 Arrondi au millième de 4,7239 : 4,724

NUMERIOUE - NOMBRES 2.

NOMBRES RELATIFS

Jusqu'en 6^e, en maths, on utilise:

distance à zéro OU valeur absolue


2,52

Opposé de -2.52 = +2.52

-5 < -2.8 < -2.52 < -2 < 0 < 1.01 < 1.1

0 est positif et négatif : 0 = -0 - a s'appelle l'opposé de a: -a + a = 0

 $(a\neq 0)$ s'appelle l'<u>inverse de a</u> : $a \times \frac{1}{a} = 1$

 $-5 < -4.75 < -4.7 < -4.07 < -4 < -\pi < -3 < -1.8 < -1 < -0.9 < 0 < 0.9 < 1 < 1.8 < 3 < \pi < 4 < 4.07 < 4.7 < 4.75 < 5$

Addition et Soustraction

Pour soustraire un nombre relatif. on additionne son opposé.

$$-5 - (+2) = -5 - 2 = -7$$

$$-5 - (-2) = -5 + 2 = -3$$

On peut regrouper les positifs et les négatifs pour effectuer les calculs.

Ensuite, nous utilisons aussi :

- les nombres entiers négatifs
- les nombres décimaux négatifs
- les autres nombres négatifs

Ces nombres sont utiles pour :

- les températures.
- les dates (avant et après J.C.).
- les calculs bancaires.
- les altitudes (en dessous de la mer)...

Multiplication (et Division)

Le produit (et le quotient) de deux nombres relatifs de même signe est positif.

$$5 \times 2 = 10$$
 et $(-5) \times (-2) = 10$

Le produit (et le quotient) de deux nombres relatifs de signes contraires est négatif.

$$-5 \times 2 = -10$$
 et $5 \times (-2) = -10$

 $a \times 0 = 0$ et $\frac{0}{2} = 0 \ (a \neq 0)$ Rappels:

Calcul de distance

Distance de A à B ou Longueur du segment [AB] : AB = BA = différence des abscisses = abscisse la plus grande - abscisse la plus petite Remarque: Une distance est toujours positive.

PUISSANCES

 $10 = 10^{-4} = \frac{1}{10^4} = 0,0001$

Définition: $a^n = a \times a \times a \times ... \times a$ Pour a un nombre

> Vocabulaire : aⁿ se lit 'a puissance n' ou 'a exposant n'.

Puissances de 10 :

$$10^{0} = 1$$

$$10^{1} = 10$$

$$10^{2} = 10 \times 10 = 100$$

$$10^{3} = 10 \times 10 \times 10 = 1000$$

$$10^{4} = 10 \times 10 \times 10 \times 10 = 10000$$

$$10^{5} = 10 \times 10 \times 10 \times 10 \times 10 = 100000$$

$$10^{6} = 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 1000000$$

$$Ex: 327 246 = 3.10^{5} + 2.10^{4} + 7.10^{3} + 2.10^{2} + 4.10^{1} + 6.10^{0}$$

$10^3 = 1000$ (3 zéros) 10 = 1000 $10^{2} = 100$ $10^{2} = 100$ $10^{1} = 10$ $10^{1} = 10$ $10^{0} = 1$ $10^{0} = 1$ $10^{0} = 1$ $10^{0} = 1$ $10^{0} = 1$ $10^{0} = 1$ $10^{0} = 1$ (2 zéros) (1 zéro) (0 zéro) (1 zéro) $10^{-2} = \frac{1}{10 \times 10} = \frac{1}{10^2} = 0.01$ (2 zéros) $10 = \frac{1}{10^3} = \frac{1}{10^3} = 0,001$

Numerioue - Nombres 3.

Puissances spéciales : $1^{n} = 1$ $0^n = 0 \ (n > 0)$ $a^1 = a$ $a^0 = 1 \ (a \neq 0)$ $a^{-1} = \frac{1}{a} (a \neq 0)$ $a^{-n} = \frac{1}{a^n} (a \neq 0)$ L'inverse de aⁿ est a⁻ⁿ.

Règles de calcul:

$$(a \times b)^{n} = a^{n} \times b^{n}$$
 $(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}} \quad (b \neq 0)$

!!! Pas de règle pour aⁿ + bⁿ !!!

!!! Pas de règle pour aⁿ – bⁿ !!!

Ecriture scientifique:

C'est la seule écriture de la forme :

telle que nombre décimal à un seul chiffre avant la virgule, chiffre ≠ 0

entier relatif (positif ou négatif)

Ex: $2569.8 = 2.5698 \times 10^3$ $0.01287 = 1.287 \times 10^{-2}$

Produit:

$$a^n \times a^m = a^{n+m}$$

$$\underline{Ex}$$
: a^2 x a^3

$$= a^5$$

 $= a^{2+3}$

$$\frac{Ex}{=}$$
: $a^4 \times a^0$

Quotient: (a≠0)

(3 zéros)

(4 zéros)

$$\frac{\overline{\mathbf{a}^{m}} = \mathbf{a}^{n}}{\mathbf{a}^{m}} = \mathbf{a}^{n}$$

$$\frac{1}{2} : \frac{\mathbf{a}^{5}}{\mathbf{a}^{2}}$$

$$= \frac{axaxaxaxa}{axa}$$
= a x a x a = a³
= a⁵⁻²

$$= a^{2} = a^{2-5} = a^{-3} = a^{3}$$

$$\begin{bmatrix} \overline{a}^3 \\ 0 \end{bmatrix} = \overline{a}^3$$

$$= \overline{a}^3$$

Inverse:

$$a^{-n} = \frac{1}{a^{n}} \quad (a \neq 0)$$
$$(\frac{a}{b})^{n} = (\frac{b}{a})^{n} \quad (b \neq 0)$$

Puissance:

$$(a^n)^m = a^{n \times m}$$

$$\frac{1}{2} \times (a^2)^3$$

= $a^2 \times a^2 \times a^2$
= $a \times a \times a \times a \times a \times a$
= $a^6 = a^{2 \times 3}$

Remarque:

 $7 \times 7 = 49 \quad \sqrt{49} = 7$ 7 est la racine carrée de 49. $\sqrt{8} \cong 2.83$ La calculatrice nous donne un ordre de grandeur.

Remarque:

On parle d'écriture ingénieur pour la forme a x 10^p où :

• a est un nombre compris entre 1 et 1000

• p est un entier relatif multiple de 3

 $2569.8 = 2,5698 \times 10^3$ $0.01287 = 12.87 \times 10^{-3}$

NUMERIOUE - NOMBRES 3. COMPLEMENT

DECIMAUX ET PUISSANCES DE 10

Nombres décimaux et puissances de 10

Un nombre décimal peut s'écrire sous différentes formes en utilisant les puissances de 10:

Ex: 5345,12

M	C	D	U	d	С	m
x10°	x10°	x10'	x10°	×10"	x10°	x104
5	3	4	5,	1	2	
5	3,	4	5	1	2	
5	3	4	5	1,	2	
5	3	4	5	1	2	0
5,	3	4	5	1	2	

5 345,12 (écriture décimale) 53,451 2 x 10 2 53 451,2 x 10⁻¹ 5 345 120 x 10⁻³ 5,345 12 x 103

La virgule se trouve toujours dans la colonne de la puissance de 10 utilisée.

Parmi ces écritures, les plus courantes sont :

♦ La première: L'écriture décimale La virgule est dans la colonne 10^0 = unité

Ex: 5345,12

⋄ le dernière: L'écriture scientifique

La virgule est après le premier chiffre non nul.

La puissance de 10 s'appelle alors l'ordre de grandeur. Ex: 5,345 12 x 10³

Multiples du mètre (préfixes grecs)

 $= 1 \text{ dam} = 10^{1} \text{ m} = 10 \text{ m}$ 1 **déca**mètre 1 **hecto**mètre $hm = 10^2 m = 100 m$ $km = 10^3 \text{ m} = 1000 \text{ m}$ 1 **kilo**mètre $Mm = 10^6 \text{ m} = 1000 000 \text{ m}$ 1 **méga**mètre 1 gigamètre = 1 **G**m = 109 m = 1000 000 000 m 1 **téra**mètre = 1 **T**m = $10^{12} \text{ m} = 1000 000 000 000 \text{ m}$

Sous-multiples du mètre (préfixes latins)

décimètre = 1 **d**m = 10^{-1} m = 0.1 m **centi**mètre = 1 **cm** = 10^{-2} m = 0.01 m **milli**mètre = 1 **m**m = 10^{-3} m = 0.001 m 1 micromètre = 1 pm = 10^{-6} m = 0.000 001 m **nano**mètre = 1 **n**m = 10^{-9} m = 0.000 000 001 m **pico**mètre = 1 **p**m = 10^{-12} m = 0,000 000 000 001 m

ES MAITHS

MA BOITE A OUTILS MATHS-COLLEGE

RACINES CARREES

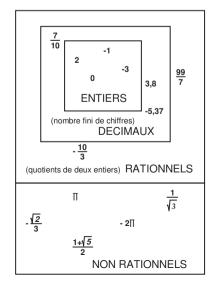
Définition : La racine carrée d'un nombre est le seul nombre positif dont le carré est égal à ce nombre.

Pour
$$a \ge 0$$
, $\sqrt{a^2} = a$

$$\sqrt{a^2} = a$$

$$(\sqrt{a})^2 = a$$

Ex: $\sqrt{25} = \sqrt{5 \times 5} = 5$ $\sqrt{8} = 2\sqrt{2} \approx 2.8$ (résultat donné par la calculatrice)


Résolution d'équation $x^2 = A$:

- Si A < 0 : l'équation n'a pas de solution car un carré est toujours positif,
- Si A = 0 : l'équation a pour seule solution x = 0,
- Si A > 0 : l'équation a deux solutions.

Ex: $x^2 = 36 \iff x = \sqrt{36} = 6$ ou $x = -\sqrt{36} = -6$ car $6 \times 6 = 36$ et $(-6) \times (-6) = 36$

Comprendre pour approfondir:

$$x^2 = 36$$

 $x^2 - 36 = 0$
 $x^2 - 6^2 = 0$
 $(x - 6)(x + 6) = 0$
Donc:
 $x - 6 = 0$ ou $x + 6 = 0$
 $x = 6$ ou $x = -6$

A NE PAS OUBLIER Les "carrés parfaits"

$$\sqrt{0} = 0$$
 $\sqrt{1} = 1$
 $\sqrt{4} = 2$
 $\sqrt{9} = 3$
 $\sqrt{16} = 4$
 $\sqrt{25} = 5$
 $\sqrt{36} = 6$
 $\sqrt{49} = 7$
 $\sqrt{64} = 8$
 $\sqrt{81} = 9$
 $\sqrt{100} = 10$
 $\sqrt{121} = 11$
 $\sqrt{144} = 12$
 $\sqrt{169} = 13$
 $\sqrt{196} = 14$
 $\sqrt{225} = 15$

Vocabulaire:

√a se lit "racine carrée de a" ou "radical de a"

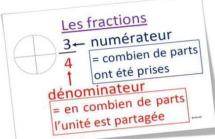
A et B sont positifs,
$$B \neq 0$$
.

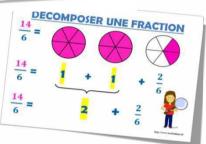
$$\sqrt{A} \times \sqrt{B} = \sqrt{A \times B}
\sqrt{A} \sqrt{B} = \sqrt{AB}$$

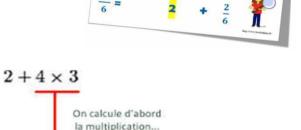
$$\frac{\sqrt{A}}{\sqrt{B}} = \sqrt{\frac{A}{B}}$$

ATTENTION

Il n'y a pas de formule pour : $\sqrt{A-B}$ $\sqrt{A}+\sqrt{B}$ $\sqrt{A}-\sqrt{B}$ $\sqrt{A+B}$


> Remarque: a et b sont positifs,

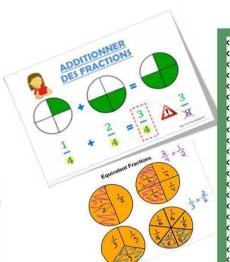

$$\sqrt{a^2 b} = \sqrt{a^2} \sqrt{b} = a \sqrt{b}$$


Ex:
$$\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \sqrt{3} = \sqrt{2 \times 2} \sqrt{3} = 2 \sqrt{3}$$

 $\sqrt{75} = \sqrt{25 \times 3} = \sqrt{5 \times 5 \times 3} = 5 \sqrt{3}$

Pour $\sqrt{12} + \sqrt{75}$, il n'y a pas de formule.

On peut tout de même écrire $\sqrt{12} + \sqrt{75} = 2\sqrt{3} + 5\sqrt{3} = 7\sqrt{3}$



2 + 12

14

On peut ensuite calculer l'addition!

Numérique

LES MATHS

FACILES

PRACTION Operations

Add or Subtract "+ or -" with common denominators

Add the numerators, denominator stays the same. EXAMPLE

$$\frac{1}{4} + \frac{2}{4} = \frac{3}{4}$$

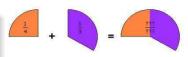
Add or Subtract "+ or -" with different denominators

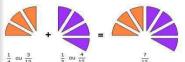
Change to equivalent fractions with common denominators, then add EXAMPLE:

$$\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$$

Multiply "x"

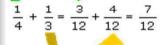
Multiply the numerators, multiply the denominators, then simplify.

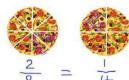

EXAMPLE:


$$\frac{2}{3} \times \frac{5}{6} = \frac{10}{18} = \frac{5}{9}$$

Divide "+"

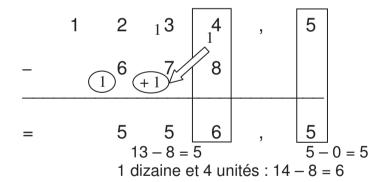
Change the problem to multiplication by inverting the second fraction, then multiply. EXAMPLE:


$$\frac{2}{5} \div \frac{1}{2} = \frac{2}{5} \times \frac{2}{1} = \frac{4}{5}$$

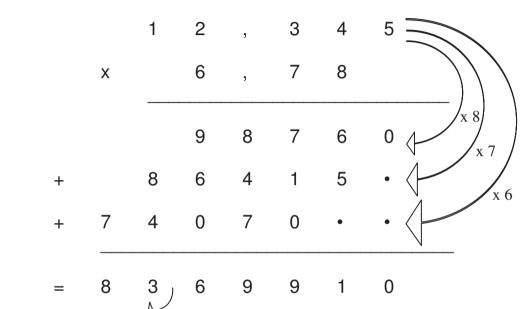


$$3 + \frac{2}{7} = \frac{3}{1} + \frac{2}{7} = \frac{21}{7} + \frac{2}{7} = \frac{23}{7}$$


Un entier est une fraction



TECHNIOUES OPERATOIRES


Addition

Soustraction

ATTENTION!: Il faut écrire les termes en alignant d'abord les **UNITES**, puis les dizaines, les centaines...etc... les dixièmes, les centièmes.

Multiplication

Les facteurs comportent 3 décimales et 2 décimales, il y a donc 3 + 2 = 5 décimales au résultat. (entier $\times 0.001 \times 0.01 = \text{entier} \times 0.00001$) On place la virgule en comptant 5 décimales.

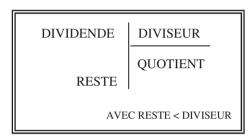
ATTENTION, guand on effectue une multiplication. on n'obtient pas toujours un nombre plus grand.

 $Ex : 20 \times 0.4 = 8$

Ordre de grandeur

Pour calculer l'ordre de grandeur d'une opération, on remplace les nombres par des nombres <u>proches</u> mais plus simples. Ex : Un ordre de grandeur de 19,486 x 1,912 est 20 x 2 = 40.

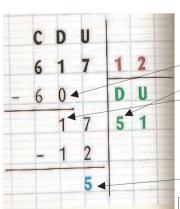
TECHNIQUES OPERATOIRES


Division

DIVIDENDE = DIVISEUR x QUOTIENT + RESTE

Vocabulaire:

3 et 5 sont des <u>diviseurs</u> de 15. 15 est un <u>multiple</u> de 3 et de 5. 15 est <u>divisible</u> par 3 et par 5.


Le <u>quotient</u> de 15 par 3 est le nombre qui multiplié par 3 donne $15 \rightarrow ?x = 3 = 15$ 5 est le quotient de 15 par $3 \rightarrow 5 \times 3 = 15$ Donc on écrit 15:3=5

Remarques: ATTENTION !!!

- * Le reste doit toujours être inférieur au diviseur.
- * On ne peut jamais diviser par 0.

Division euclidienne : les nombres sont entiers, le quotient aussi

Sur cette opération, on a repéré Centaines, Dizaines, Unités.

On cherche le multiple de 12 le plus proche de $61 \rightarrow 60$. $\sim 60 = 5 \times 12$

On calcule 61 - 60 = 1 (On écrit la soustraction ou pas.)

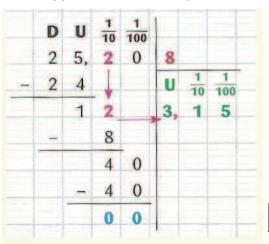
Il reste 1 dizaine, on 'abaisse' les 7 unités.

On cherche le multiple de 12 le plus proche de $17 \rightarrow 12$. 17 - 12 = 5. Il reste donc 5 unités.

$$617 = 12 \times 51 + 5$$
 et $5 < 12$

Division décimale : au moins un nombre est décimal non entier, on franchit la décimale au quotient quand on la franchit au dividende.

3 cas


• Dividende et diviseur entiers : la division 'ne tombe pas juste, on la continue' Ex:5:4=1,25 On ajoute une virgule et des 0 (0 dixièmes, 0 centièmes...).

• Dividende décimal non entier : on continue l'opération après avoir franchi la virgule. Ex:5,4:4=1,35 On ajoute des 0 pour continuer l'opération si besoin.

• Diviseur décimal non entier : on peut multiplier le dividende et le diviseur par un multiple de 10 sans changer le résultat. \Rightarrow On revient à une division par un entier. Ex : 5,25 : 4,2 = 52,5 : 42 = 1,25

A la fin du calcul, il y a deux possibilités :

- Si la division s'arrête, on a trouvé le **quotient exact.** (Il n'est pas forcément entier, mais c'est la valeur exacte de l'opération.)
- Si la division ne s'arrête pas (**division périodique**), on ne pourra donner qu'une **valeur approchée** du résultat (par une troncature ou un arrondi).

Sur cette opération, on a repéré Dizaines, Unités, dixièmes et centièmes.

<u>Attention !!!</u> Ne pas oublier de placer la virgule au quotient <u>avant</u> d'abaisser le chiffre des dixièmes.

On ajoute un 0 dans les centièmes pour pouvoir continuer la division (on a le droit car 25,20 = 25,2).

Il reste 0, donc la division s'arrête :

25,2:8=3,15

3,15 est le <u>quotient exact non entier</u> de 25,2 par 8.

LES QUATRE OPERATIONS

OPERATION	Signe	Le résultat s'appelle	a et b s'appellent	Propriétés	OPERATION INVERSE	Signe	Le résultat s'appelle	a et b s'appellent	Remarques
ADDITION	+	La somme	Les termes	Quels que soient les décimaux, * $a + b = b + a$ * $(a + b) + c = a + (b + c)$ * $a + 0 = a$ * si a est entier, $a + 1$ est l'entier qui suit a	SOUSTRACTION	_	La différence	Les termes	Dans le système décimal, * a - b n'existe que si a ≥ b. * a - b = 0 si a = b.
multiplication prioritaire sur addition et soustraction (s'il n'y a pas de parenthèses)	X ou RIEN	Le produit	Les facteurs	Quels que soient les décimaux, * a x b = b x a * (a x b) x c = a x (b x c) * a x 1 = a * a x 0 = 0 x a = 0 * k x (a+b) = kxa + kxb k x (a-b) = kxa - kxb	DIVISION prioritaire sur addition et soustraction (s'il n'y a pas de parenthèses)	ou ou a b fract	Le quotient	Le dividende et le diviseur	* b est toujours ≠ 0 * a : b n'existe pas toujours dans le système décimal. Ex 10 : 3 ≈ 3,3333 n'est pas décimal (il ne s'écrit pas avec un nombre fini de chiffres). * a : b = 1 si a = b. * a : b ≥ 1 si a ≥ b * a : b ≤ 1 si a ≤ b

Règle de calcul :

Dans une suite de calculs, on effectue d'abord les calculs situés à l'intérieur des parenthèses.

Ex : 5 + (4 - 1) = 5 + 3 = 8

ENCHAINEMENTS ET PRIORITES D'OPERATIONS

Les mathématiciens se sont mis d'accord pour adopter des règles communes, pour l'écriture ou le calcul. On les appelle des conventions.

Organisation des calculs

Exemple:

$$\begin{array}{rcl}
3 & x & [94 - (10 + 4)] \\
= & 3 & x & [94 - 14] \\
= & 3 & x & 80
\end{array}$$

240

$$23 - [(3 \times (2 + 4,5)) - (2 \times 1,5)]$$

$$= 23 - [(3 \times 6,5) - (2 \times 1,5)]$$

$$= 23 - [19,5] - (2 \times 1,5)]$$

19,5 23 – [

23 -

Ecriture des Puissances:

a au carré: $a^2 = a \times a$

a au cube: $a^3 = a \times a \times a$

a puissance 6: $a^6 = a \times a \times a \times a \times a \times a$

Convention d'écriture : On peut supprimer le signe 'x' devant les lettres et devant les parenthèses.

$$ab = axb$$
 et $2(3+4) = 2x(3+4)$

L'ordre des priorités dans les calculs est :

1. Puissances, Numérateur et Dénominateur

des Quotients

2. Multiplications et Divisons

de gauche à droite

3. Additions et Soustractions

de gauche à droite

Les calculs entre parenthèses et crochets

sont calculés en priorité,

de l'intérieur vers l'extérieur

A l'intérieur des Parenthèses et Crochets.

les mêmes règles de priorité s'appliquent.

La barre d'une fraction ou d'une racine carrée joue le rôle d'une parenthèse.

 $A = 23 - [3 \times (2 + 4,5) - 2 \times 1,5]$

 $A = 23 - [3 \times 6, 5 - 2 \times 1, 5]$

A = 23 - [19,5 - 3]

A = 23 - 16.5

Les parenthèses les plus à l'intérie Les multiplications prioritaires

à l'intérieur des parenthèses Les varenthèses

> La multiplication et la division sont prioritaires sur l'addition et la soustraction.

FRACTIONS

<u>Ečriture fractionnaire</u>: quotient de deux nombres a et b (b≠0)

a <= a est le numérateur

a:b= -----

b <= b est le dénominateur

 $\frac{a}{b}$ est le quotient exact de a par b.

<u>Fraction</u>: $\frac{a}{b}$ avec a et b entiers (b \neq 0)

Spéciales:

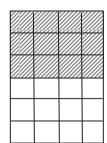
$\frac{1}{2}$ = un demi $\frac{1}{10}$ = un dixième

$$\frac{1}{3}$$
 = un tiers $\frac{1}{100}$ = un centième

$$\frac{1}{4}$$
 = un quart $\frac{1}{1000}$ = un millième

Fractions décimales :

Fractions de dénominateur


10; 100; 1000 ...etc...

 $\underline{\text{Ex}} \quad \frac{27}{10}; \quad \frac{4}{100}; \quad \frac{3268}{1000}; \quad \frac{1}{10000}$

(Remarque : Une fraction unitaire est une fraction de numérateur 1.)

Deux quotients sont égaux si on multiplie ou si on divise le numérateur et le dénominateur par un même nombre (≠ 0) :

$$\frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \frac{9}{15}$$

Exemple : La tablette de chocolat...

moitié de la tablette = 3 barres sur 6 = 12 carrés sur 24 Il y a la même quantité !!! Donc $\frac{1}{2} = \frac{3}{6} = \frac{12}{24}$

Simplifier une fraction : trouver une fraction égale

avec un numérateur et un dénominateur plus petits

Fraction irréductible : fraction que l'on ne peut plus simplifier

Un nombre

est divisible par...

Divisibilité par 2: le chiffre des unités est 0; 2; 4; 6 ou 8

Divisibilité par 5: le chiffre des unités est 0 ou 5

Divisibilité par 10: le chiffre des unités est 0

Divisibilité par 100: les deux derniers chiffres sont 00
Divisibilité par 1000: les trois derniers chiffres sont 000

Divisibilité par 3: la somme de ses chiffres est aussi divisible par 3
Divisibilité par 9: la somme de ses chiffres est aussi divisible par 9
Divisibilité par 4: le nombre formé par ses deux derniers chiffres

est aussi divisible par 4.

L EST IMPERATIF DE BIEN CONNAITRE SES TABLES DE MULTIPLICATION!

Règles de calcul

a, b, c, d sont des nombres, c \neq 0 et d \neq 0

$$\frac{a}{c} \times b = \frac{a \times b}{c}$$

$$\frac{a}{c} \times \frac{b}{d} = \frac{a \times b}{c \times d}$$

Pas de calcul direct possible : mettre au même dénominateur

$$\frac{a}{e} + \frac{b}{e} = \frac{a+b}{e}$$

$$\frac{a}{e} - \frac{b}{e} = \frac{a-b}{e}$$

Pour comparer, additionner et soustraire mettre au même dénominateur !!! (réduire au même dénominateur)

Pour multiplier : simplifier les fractions

<u>Diviser</u>, c'est multiplier par l'inverse ! pour a, b, c, d des nombres, $a \neq 0$ b $\neq 0$, c $\neq 0$ et d $\neq 0$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Rappels:

 $\frac{1}{a}$ est l'<u>inverse</u> de a (\triangle -a est son <u>opposé</u>),

 $\frac{b}{a}$ est l'<u>inverse</u> de $\frac{a}{b}$ ($\cancel{\triangle}$ - $\frac{a}{b}$ est son <u>opposé</u>).

Pourcentage: p % d'une quantité = $\frac{p}{100}x$ quantité = p x quantité : 100

<u>Définition</u>: Nombre premier => Nombre divisible seulement par 1 et lui-même.

Numerique - Operations 4:

COMPLEMENT

DECOMPOSITIONS

1.01229					DECOME CONTION	=			
1	Nombre premier	<u>21</u>	3 x 7	41	Nombre premier	61	Nombre premier	<u>81</u>	3x3x3x3 (9x9; 3x27)
2	Nombre premier	<u>22</u>	2 x 11	<u>42</u>	2x3x7 (2x21; 3x14; 6x7)	<u>62</u>	2 x 31	82	2 x 41
3	Nombre premier	23	Nombre premier	43	Nombre premier	63	3x3x7 (3x21; 9x7)	83	Nombre premier
<u>4</u>	2 x 2	<u>24</u>	2x2x2x3 (2x12; 3x8; 4x6)	<u>44</u>	2x2x11 (2x22; 4x11)	<u>64</u>	2x2x2x2x2x2 (2x32; 4x16; 8x8)	<u>84</u>	2x2x3x7 (2x42;4x21;6x14;3x28;12x7)
5	Nombre premier	<u>25</u>	5 x 5	<u>45</u>	3x3x5 (3x15; 5x9)	<u>65</u>	5 x 13	<u>85</u>	5 x 17
<u>6</u>	2 x 3	<u>26</u>	2 x 13	<u>46</u>	2 x 23	<u>66</u>	2x3x11 (2x33; 3x22; 6x11)	<u>86</u>	2 x 43
7	Nombre premier	<u>27</u>	3x3x3 (3x9)	47	Nombre premier	67	Nombre premier	<u>87</u>	3 x 29
8	2x2x2 (2x4)	<u>28</u>	2x2x7 (2x14; 4x7)	<u>48</u>	2x2x2x2x3 (2x24;3x16;4x12;8x6)	<u>68</u>	2x2x17 (2x34; 4x17)	88	2x2x2x11 (2x44; 4x22; 8x11)
9	3 x 3	29	Nombre premier	<u>49</u>	7 x 7	<u>69</u>	3 x 23	89	Nombre premier
<u>10</u>	2 x 5	<u>30</u>	2x3x5 (2x15; 5x6; 3x10)	<u>50</u>	2 x 5 x 5 (2x25; 5x10)	<u>70</u>	2x5x7 (2x35; 5x14; 7x10)	<u>90</u>	2x3x3x5 (3x30; 5x18; 6x15; 10x9)
11	Nombre premier	31	Nombre premier	<u>51</u>	3 x 17	71	Nombre premier	<u>91</u>	7 x 13
<u>12</u>	2x2x3 (2x6; 3x4)	<u>32</u>	2x2x2x2x2 (2x16; 4x8)	<u>52</u>	2x2x13 (4x13; 2x26)	<u>72</u>	2x2x2x3x3 (2x36;3x24;4x18;6x12;8x9)	<u>92</u>	2x2x23 (2x46; 4x23)
13	Nombre premier	<u>33</u>	3 x 11	53	Nombre premier	73	Nombre premier	<u>93</u>	3 x 31
<u>14</u>	2 x 7	<u>34</u>	2 x 17	<u>54</u>	2x3x3x3 (2x27; 3x18; 6x9)	<u>74</u>	2 x 37	<u>94</u>	2 x 47
<u>15</u>	3 x 5	<u>35</u>	5 x 7	<u>55</u>	5 x 11	<u>75</u>	3x5x5 (3x25; 5x15)	<u>95</u>	5 x 19
<u>16</u>	2x2x2x2 (2x8; 4x4)	<u>36</u>	2x2x3x3 (2x18; 3x12; 4x9; 6x6)	<u>56</u>	2x2x2x7 (2x28; 4x14; 7x8)	<u>76</u>	2x2x19 (2x39; 4x19)	<u>96</u>	2x2x2x2x2x3 (2x48;3x32;4x24;6x16;8x12)
17	Nombre premier	37	Nombre premier	<u>57</u>	3 x 19	<u>77</u>	7 x 11	97	Nombre premier
<u>18</u>	2x3x3 (2x9; 3x6)	<u>38</u>	2 x 19	<u>58</u>	2 x 29	<u>78</u>	2x3x13 (2x39; 3x26; 6x13)	<u>98</u>	2x7x7 (2x49; 14x7)
19	Nombre premier	<u>39</u>	3 x 13	59	Nombre premier	79	Nombre premier	<u>99</u>	3x3x11 (3x33; 9x11)
<u>20</u>	2x2x5 (2x10; 4x5)	<u>40</u>	2x2x2x5 (2x20; 4x10; 5x8)	<u>60</u>	2x2x3x5 (2x30;3x20;4x15;5x12;6x10)	<u>80</u>	2x2x2x2x5 (2x40; 4x20;8x10; 5x16)	<u>100</u>	2x2x5x5 (2x50;5x20;4x25;10x10)

NUMERIOUE - OPERATIONS 5.

ES MATHS

MA BOITE A OUTILS MATHS-COLLEGE

PGCD ET PPCM

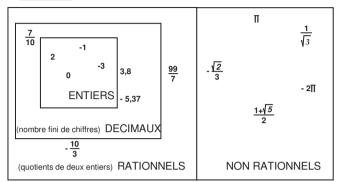
Exemple:

Multiples de 24 : 0; 24; 48; 72; 96; 120; 144 ...

Multiples de 36 : 0; 36; 72; 108; 144 ...

Parmi les multiples communs à 24 et 36, le plus petit non nul est 72 :

Plus Petit Commun Multiple de 24 et 36 → PPCM (24; 36) = 72


Exemple:

1; 2; 3; 4; 6; 8; 12; 24. 1; 2; 3; 4; 6; 9; 12; 18; 36. Diviseurs de 24 : Diviseurs de 36 :

Parmi les diviseurs communs à 24 et 36, le plus grand est 12 :

Plus Grand Commun Diviseur à 24 et 36 → PGCD (24; 36) = 12

RAPPEL

Les diviseurs communs à deux nombres permettent de simplifier une fraction. Le plus grand d'entre eux, le PGCD, permet de la rendre irréductible.

$$\underline{\mathsf{Ex}}: \quad \frac{24}{36} = \frac{2 \times 12}{3 \times 12} = \frac{2}{3}$$

 $\frac{2}{3}$ est une fraction irréductible.

Remarque:

Si $\frac{a}{b}$ est irréductible, PGCD(a; b) = 1. On dit que a et b sont premiers entre eux.

L'algorithme d'Euclide permet de déterminer le PGCD de deux nombres grâce aux divisions euclidiennes. On peut également utiliser l'algorithme des différences (soustractions successives), généralement plus longue...

Algorithme d'Euclide

(divisions successives)

On divise le plus grand nombre par le plus petit. On recommence en divisant le diviseur par le reste.

On recommence autant de fois que nécessaire jusqu'à trouver un reste nul.

Lorsque le reste est 0, l'algorithme s'arrête, le PGCD est le dernier reste non nul trouvé. Ex: Calcul du PGCD de 144 et 78

$$144 - 78 = 66$$

$$78 - 66 = 12$$

$$66 - 12 = 54$$

$$54 - 12 = 42$$

$$42 - 12 = 30$$

$$30 - 12 = 18$$

$$18 - 12 = 6$$

$$12 - 6 = 6$$

$$6 - 6 = 0$$

$$PGCD(144;78) = 6$$

Soustractions

successives

$$\frac{144}{78} = \frac{24 \times 6}{13 \times 6} = \frac{24}{13}$$

(fraction irréductible)

Ex: Calcul du PGCD de 462 et 546 Algorithme d'Euclide:

$$546 = 462 \times 1 + 84$$

 $462 = 84 \times 5 + 42$

$$84 = 42 \times 2 + 0$$

Divisions

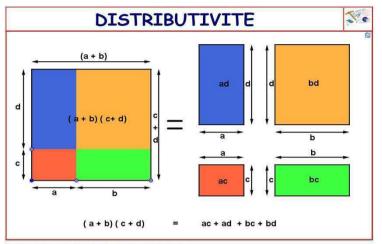
successives

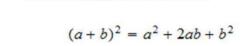
$$\frac{162}{546} = \frac{42 \times 11}{42 \times 13} = \frac{11}{13}$$
 (fraction irréductible)

LES MATHS FACILES Numerique - Operations 5.

COMPLEMENT

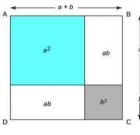
Nombres Premiers

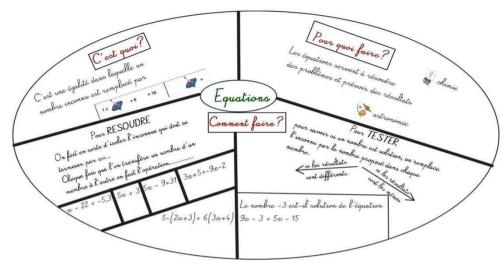

2	101	211	307	401	503	601	701	809	907	1009	1201	1409	1601	1801	2003	2203	2411	2609	2801
3	103	223	311	409	509	607	709	811	911	1013	1213	1423	1607	1811	2011	2207	2417	2617	2803
5	107	227	313	419	521	613	719	821	919	1019	1217	1427	1609	1823	2017	2213	2423	2621	2819
7	109	229	317	421	523	617	727	823	929	1021	1223	1429	1613	1831	2027	2221	2437	2633	2833
11	113	233	331	431	541	619	733	827	937	1031	1229	1433	1619	1847	2029	2237	2441	2647	2837
13	127	239	337	433	547	631	739	829	941	1033	1231	1439	1621	1861	2039	2239	2447	2657	2843
17	131	241	347	439	557	641	743	839	947	1039	1237	1447	1627	1867	2053	2243	2459	2659	2851
19	137	251	349	443	563	643	751	853	953	1049	1249	1451	1637	1871	2063	2251	2467	2663	2857
23	139	257	353	449	569	647	757	857	967	1051	1259	1453	1657	1873	2069	2267	2473	2671	2861
29	149	263	359	457	571	653	761	859	971	1061	1277	1459	1663	1877	2081	2269	2477	2677	2879
31	151	269	367	461	577	659	769	863	977	1063	1279	1471	1667	1879	2083	2273	2503	2683	2887
37	157	271	373	463	587	661	773	877	983	1069	1283	1481	1669	1889	2087	2281	2521	2687	2897
41	163	277	379	467	593	673	787	881	991	1087	1289	1483	1693	1901	2089	2287	2531	2689	2903
43	167	281	383	479	599	677	797	883	997	1091	1291	1487	1697	1907	2099	2293	2539	2693	2909
47	173	283	389	487		683		887		1093	1297	1489	1699	1913	2111	2297	2543	2699	2917
53	179	293	397	491		691				1097	1301	1493	1709	1931	2113	2309	2549	2707	2927
59	181			499						1103	1303	1499	1721	1933	2129	2311	2551	2711	2939
61	191									1109	1307	1511	1723	1949	2131	2333	2557	2713	2953
67	193									1117	1319	1523	1733	1951	2137	2339	2579	2719	2957
71	197									1123	1321	1531	1741	1973	2141	2341	2591	2729	2963
73	199									1129	1327	1543	1747	1979	2143	2347	2593	2731	2969
79										1151	1361	1549	1753	1987	2153	2351		2741	2971
83										1153	1367	1553	1759	1993	2161	2357		2749	2999
89										1163	1373	1559	1777	1997	2179	2371		2753	
97										1171	1381	1567	1783	1999		2377		2767	
										1181	1399	1571	1787			2381		2777	
										1187		1579	1789			2383		2789	
										1193		1583				2389		2791	
												1597				2393		2797	
																2399			


Numerique - Operations 5.

Complement

Nombres Premiers


3001	3203	3407	3607	3803	4001	4201	4409	4603	4801	5003	5209	5407	5623	5801	6007	6203	6421	6607	6803
3011	3209	3413	3613	3821	4003	4211	4421	4621	4813	5009	5227	5413	5639	5807	6011	6211	6427	6619	6823
3019	3217	3433	3617	3823	4007	4217	4423	4637	4817	5011	5231	5417	5641	5813	6029	6217	6449	6637	6827
3023	3221	3449	3623	3833	4013	4219	4441	4639	4831	5021	5233	5419	5647	5821	6037	6221	6451	6653	6829
3037	3229	3457	3631	3847	4019	4229	4447	4643	4861	5023	5237	5431	5651	5827	6043	6229	6469	6659	6833
3041	3251	3461	3637	3851	4021	4231	4451	4649	4871	5039	5261	5437	5653	5839	6047	6247	6473	6661	6841
3049	3253	3463	3643	3853	4027	4241	4457	4651	4877	5051	5273	5441	5657	5843	6053	6257	6481	6673	6857
3061	3257	3467	3659	3863	4049	4243	4463	4657	4889	5059	5279	5443	5659	5849	6067	6263	6491	6679	6863
3067	3259	3469	3671	3877	4051	4253	4481	4663	4903	5077	5281	5449	5669	5851	6073	6269	6521	6689	6869
3079	3271	3491	3673	3881	4057	4259	4483	4673	4909	5081	5297	5471	5683	5857	6079	6271	6529	6691	6871
3083	3299	3499	3677	3889	4073	4261	4493	4679	4919	5087	5303	5477	5689	5861	6089	6277	6547	6701	6883
3089	3301	3511	3691	3907	4079	4271	4507	4691	4931	5099	5309	5479	5693	5867	6091	6287	6551	6703	6899
3109	3307	3517	3697	3911	4091	4273	4513	4703	4933	5101	5323	5483	5701	5869	6101	6299	6553	6709	6907
3119	3313	3527	3701	3917	4093	4283	4517	4721	4937	5107	5333	5501	5711	5879	6113	6301	6563	6719	6911
3121	3319	3529	3709	3919	4099	4289	4519	4723	4943	5113	5347	5503	5717	5881	6121	6311	6569	6733	6917
3137	3323	3533	3719	3923	4111	4297	4523	4729	4951	5119	5351	5507	5737	5897	6131	6317	6571	6737	6947
3163	3329	3539	3727	3929	4127	4327	4547	4733	4957	5147	5381	5519	5741	5903	6133	6323	6577	6761	6949
3167	3331	3541	3733	3931	4129	4337	4549	4751	4967	5153	5387	5521	5743	5923	6143	6329	6581	6763	6959
3169	3343	3547	3739	3943	4133	4339	4561	4759	4969	5167	5393	5527	5749	5927	6151	6337	6599	6779	6961
3181	3347	3557	3761	3947	4139	4349	4567	4783	4973	5171	5399	5531	5779	5939	6163	6343		6781	6967
3187	3359	3559	3767	3967	4153	4357	4583	4787	4987	5179		5557	5783	5953	6173	6353		6791	6971
3191	3361	3571	3769	3989	4157	4363	4591	4789	4993	5189		5563	5791	5981	6197	6359		6793	6977
	3371	3581	3779		4159	4373	4597	4793	4999	5197		5569		5987	6199	6361			6983
	3373	3583	3793		4177	4391		4799				5573				6367			6991
	3389	3593	3797			4397						5581				6373			6997
	3391											5591				6379		·	
		.											•			6389			
																6397			



 $(a-b)^2 = a^2 - 2ab + b^2$

$$(a+b)(a-b) = a^2 - b^2$$

$$ax + b = 0$$

$$ax+b-b=0-b$$
 On soustrait b dans chaque membre

$$ax = -b$$

$$\frac{1}{a} \times ax = \frac{1}{a} \times (-b)$$
 On multiplie chaque membre par $\frac{1}{a}$

$$10x - 5 = 1 + 2x$$

$$10x-5-2x=1+2x-2x$$

$$8x - 5 = 1$$

$$8x-5+5=1+5$$

$$8x = 6$$

$$\frac{8x}{8} = \frac{6}{8}$$

$$x = \frac{6}{8}$$

$$x = \frac{3}{4}$$

Numérique

$$(x-2)(-x-3) = 0 \rightarrow \text{équation produit}$$

$$x - 2 = 0$$
 $\phi u - x - 3 = 0$

$$x = 2$$
 $ou - x = 3$

$$x = 2$$
 ou $x = -3$

$$S = \{2; -3\}$$

CALCUL LITTERAL DEVELOPPEMENTS ET FACTORISATIONS

Expression littérale : un ou plusieurs nombres sont représentés par des lettres.

Pour simplifier l'écriture :

- * Suppression du signe x devant les lettres et devant les parenthèses,
- * Suppression du 1 : on peut écrire a au lieu de 1a,
- * Suppression des parenthèses autour des produits (qui sont prioritaires sur l'addition et la soustraction).

Réduire,

c'est écrire le plus simplement possible : supprimer les parenthèses et effectuer les calculs

Rappel: L'opposé d'une somme est

la somme des opposés de chacun des termes.

$$a - b = a + (-b)$$

 $-(a + b) = -a - b$
 $-(a - b) = -a + b$

<u>Développer</u>,

c'est changer d'opération principale : multiplication devient addition ou soustraction.

	a	b	
c	ac	bc	
d	ad	bd	

Factoriser,

c'est changer d'opération principale : addition ou soustraction devient multiplication.

Attention: Factoriser est difficile, il faut faire apparaitre ce qui est en commun, le facteur commun, dans chacun des termes.

Forme factorisée

$$k \times (a+b) = k(a+b) = ka + kb$$
 $k \times (a-b) = k(a-b) = ka - kb$
 $k \times (a-b) = a(c+d) + b(c+d)$
 $k \times (a-b) = a(c+d) + b(c+d)$
 $k \times (a-b) = a(c-d) - b(c-d)$
 $k \times (a-b)$

EXEMPLES: 4 + (-2t) = 4 - 2t

$$-(2x+3) = -2x-3$$

$$-(2x-3) = -2x+3$$

$$5 - (-2 + x - 3y) = 5 + 2 - x + 3y$$

$$3 (4+3) = 3\times4 + 3\times3 = 12 + 9 = 21$$

$$3 (2-12) = 3x2 - 3\times12 = 6 - 36 = -30$$

$$3 (2z+4) = 3x2z + 3x4 = 6z + 12$$

$$-5 (2x-3) = -5x2x + 5x3 = -10x + 15$$

$$(2x+3) (3y+4) = 2x3xy + 4x2x + 3x3y + 3x4$$

$$= 6xy + 8x + 9y + 12$$

$$(2x-3)(3y-4) = 2x3 xy - 4x2x - 3x3y + 3x4$$
$$= 6 xy - 8x - 9y + 12$$

$$(2x + 3) (3x - 4) = 2x3 x^2 - 4x2x + 3x3x - 3x4$$

= $6 x^2 - 8x + 9x - 12 = 6 x^2 + x - 12$

$$3a - 27 = 3xa - 3x9 = 3(a-9)$$

3 est le facteur commun : "3 facteur de a-9"

IDENTITES REMARQUABLES

$$(a+b)^{2} = a^{2} + 2 a b + b^{2}$$

$$(a+b)^{2} = (a+b)(a+b)$$

$$= (a+b)(a+b)^{2}$$

$$= (a+b)(a+b)^{2}$$

$$= (a+b)(a+b)^{2}$$

$$= a^{2} + ab + ab + b^{2}$$

$$= a^{2} + 2 a b + b^{2}$$

$$= a^{2} - ab + ab + b^{2}$$

$$= a^{2} - ab - ab + b^{2}$$

$$= a^{2} - ab + ab + b^{2}$$

$$=$$

DEVELOPPEMENTS

On applique les identités remarquables, il faut donc bien sûr les connaître par cœur !!!

FACTORISATIONS

Pour factoriser, il est indispensable de faire apparaître le facteur commun dans chacun des termes. C'est un exercice difficile, seul l'entraînement permet d'y arriver !!!

Voici quelques exemples des situations de factorisation les plus fréquentes (il faut savoir les refaire) :

$$3x + 6y + 9$$

$$= 3 \times x + 3 \times 2y + 3 \times 3$$

$$= 3 \times (x + 2y + 3)$$

$$= (x + 3) (2x + 5)$$

$$= 3x \times (x + 2y + 3)$$

$$= (x + 3) (2x + 5)$$

$$= 3x \times (x + 2y + 3)$$

$$= (x + 3) (2x + 5)$$

$$= (x + 3) (x + 1 - 2x + 4)$$

$$= (x + 3) (x + 1 - 2x + 8)$$

$$= (x + 3) (x + 1 - 2x + 8)$$

$$= (x + 3) (x + 7)$$

$$= (x + 3) (x + 4) (x + 3)$$

$$= (x + 4) (x + 3)$$

$$= (x + 4) (x + 4)$$

$$= (x + 4) (x + 4)$$

$$= (x + 4) (x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 1 + x + 4)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x - 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 3)$$

$$= (x + 3) (x + 3) + (x + 5) (x + 5)$$

$$= (x + 3) (x + 3) + ($$

Une équation est une égalité dans laquelle une lettre représente un nombre inconnu.

« Que peut-on mettre à la place de la lettre pour que l'égalité soit vraie ? » Une équation, c'est donc une question!

EOUATIONS

RESOUDRE l'équation, c'est répondre à cette question ⇒ trouver toutes les valeurs qui la rendent vraie. Ce sont les solutions de l'équation.

> LES 2 CÔTES DE L'EGALITE DOIVENT TOUJOURS ETRE EGAUX. /!\

On peut modifier les deux membres d'une équation, mais ils doivent TOUJOURS RESTER EGAUX:

- on peut ajouter ou soustraire le même nombre à chaque membre,
- on peut multiplier ou diviser les deux membres par le même nombre.

Le but est d'arriver à :

EQUATION DU PREMIER DEGRE A UNE INCONNUE

$$\underbrace{\mathsf{Ex}} : \ \ -2x \ \bigcirc \ \ 5x - 2 \ = \ 2x + 4 \ \bigcirc \ \ 2$$

$$+2 \ \bigcirc \ \ 3x - 2 \ = \ 4 \ \bigcirc \ \ +2$$

$$: 3 \ \bigcirc \ \ x \ = \ 6$$

$$x \ = \ 2$$

Retirons 2x de chaque côté.

Ajoutons 2 de chaque côté.

Divisons par 3 de chaque côté.

Résoudre des équations sert à résoudre des problèmes. Il faut savoir "transformer" l'énoncé du problème en une équation, ce qui n'est pas facile et demande de l'entrainement.

Les 4 étapes de résolution d'un problème :

1. Choisir l'inconnue.

2. Mettre en équation : traduire les renseignements en fonction de l'inconnue. 3. Résoudre l'équation.

4. Donner la solution du problème. NE PAS OUBLIER DE LA VERIFIER.

EQUATION - PRODUIT A UNE INCONNUE

Ex : Nous n'avons pas encore appris à résoudre $5x^2 - 13x + 6 = 0$. Mais nous sommes capables de résoudre la forme factorisée :

$$(x-2)(5x-3)=0$$

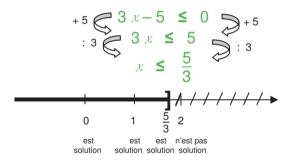
Un produit de facteurs est nul si et seulement si l'un des facteurs est nul. $A \times B = 0$ ssi A = 0 ou B = 0.

> Les solutions de l'équation (x-2)(5x-3)=0sont les solutions de chacune des équations :

$$+2 \iff x-2=0 \\ x=2$$

$$+3 \iff 5 \times -3=0 \\ 5 \times =3 \\ x=\frac{3}{5}$$

Les solutions de l'équation (x-2)(5x-3)=0 sont x=2 et $x=\frac{3}{5}$


J" LES MATHS FACUES

MA BOITE A OUTILS MATHS-COLLEGE

Une <u>inéquation</u> est une <u>inégalité</u> dans laquelle une lettre représente un nombre inconnu.

<u>RESOUDRE</u> l'inéquation, c'est trouver toutes les valeurs possibles de l'inconnue pour que l'inégalité soit vraie.

 \underline{Ex} : Résoudre l'inéquation $3x-5 \le 0$

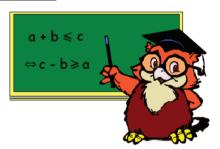
Le crochet est tourné du côté des solutions car x peut être égal à $\frac{5}{3}$,

 $\frac{5}{3}$ est donc une des solutions de l'inéquation.

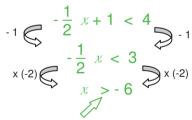
On ne peut pas citer toutes les solutions de l'inéquation mais on peut les représenter sur un axe.

ORDRE ET MULTIPLICATION

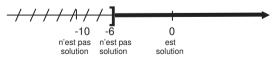
Si a>0, alors les nombres ab et ac sont rangés dans le même ordre que les nombres b et c.


Si a > 0 et b < c, alors ab < ac.

Si a<0, alors les nombres ab et ac sont rangés dans l'ordre inverse des nombres b et c.


Si a < 0 et b < c, alors ab > ac

On utilise donc les mêmes techniques que pour la résolution d'équations,


mais on doit penser à changer le sens de l'inégalité si on multiplie ou on divise par un nombre négatif.

 $\underline{\text{Ex}}$: Résoudre l'inéquation $-\frac{1}{2}$ x + 1 < 4

JE MULTIPLIE PAR UN NOMBRE NEGATIF, JE DOIS "RETOURNER LE SIGNE D'INEGALITE".

Le crochet n'est pas tourné du côté des solutions car x ne peut pas être égal à - 6,

- 6 n'est pas solution de l'inéquation.

RAPPEL

- inférieur à
- ≤ inférieur ou égal à
- > supérieur à
- ≥ supérieur ou égal à

LA BONNE TECHNIQUE

Après avoir résolu l'inéquation, on teste une ou plusieurs valeurs de x (dont 0) pour vérifier qu'il n'y a pas d'erreur. <u>C'est essentiel</u>,

car une erreur de sens est très vite arrivée !!!

ASTUCE: L'idéal est de faire en sorte de placer les inconnues du 'bon côté' pour obtenir un coefficient positif.

SYSTEMES D'EOUATIONS

On peut trouver les valeurs de deux inconnues lorsque l'on a deux équations.

Il s'agit d'un système de deux éguations à deux inconnues.

Résoudre le système, c'est déterminer tous les couples (x; y) qui vérifient en même temps les deux équations.

RESOLUTION DE PROBLEME A DEUX INCONNUES.

On retrouve les 4 étapes de la résolution d'un problème par équation :

- Choisir les inconnues.
- 2. Mettre en équations : traduire les renseignements en fonction des inconnues.
 - 3. Résoudre le système d'équations.
 - 4. Donner la solution du problème.
 - NE PAS OUBLIER DE LA VERIFIER.

Résolution ALGEBRIQUE

METHODE DE SUBSTITUTION

On exprime dans une des équations une des inconnues en fonction de l'autre. On reporte la valeur trouvée dans l'autre équation.

> NB: Méthode idéale quand un des coefficients est 1 ou -1.

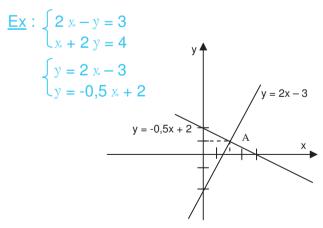
METHODE DE COMBINAISON

On multiplie les membres de chaque équation par des nombres choisis de telle manière qu'en additionnant membre à membre les équations obtenues, l'une des inconnues disparaisse.

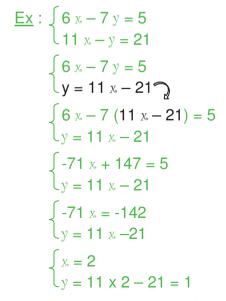
$$\underline{Ex}: \begin{cases} 2 x - 3 y = 7 \\ 5 x + 2 y = 8 \end{cases}$$

$$\begin{cases} 19 \ x = 38 \\ 2 \ x - 3 \ y = 7 \end{cases}$$

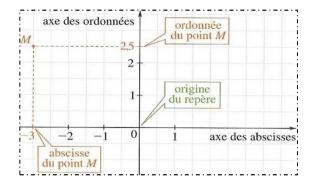
$$\begin{cases} x = 2 \\ 2 \times 2 - 3 y = 7 \end{cases}$$


$$\begin{cases} x = 2 \\ y = -1 \end{cases}$$

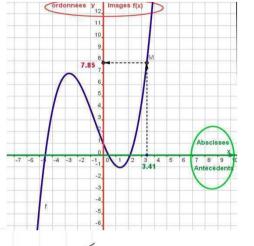
(2; -1) est la solution du système d'équations.


Interprétation GRAPHIQUE

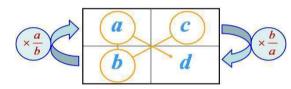
Pour interpréter graphiquement un système, on l'écrit sous la forme : y = ...


Dans un repère, on construit les représentations graphiques correspondantes: deux droites. Les coordonnées du point d'intersection sont la solution du système.

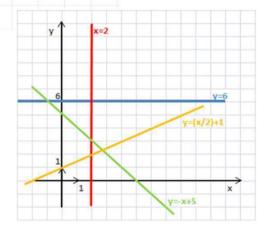
Les coordonnées de A sont la solution graphique du système d'équations. On ne peut pas être sûr que (2; 1) soient leurs valeurs exactes.



(2; 1) est la solution du système d'équations.



ordonnée à



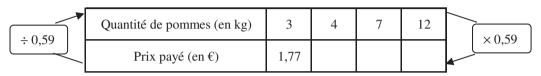
$$d = c \times \frac{b}{a} = \frac{c \times b}{a} = c \times b \div a$$

Numérique

Proportionnalité Fonctions

on monte

de 2


Numerique - Fonctions 0.

Prerequis.

CALCULS DE PROPORTIONNALITE

Il y a principalement quatre méthodes pour calculer en situation de proportionnalité.

Sur le marché, Mr Martin vend des pommes.

1) En utilisant le coefficient de proportionnalité (passage par l'unité)

Méthode: Exemple pour 4 kg

On trouve le coefficient $1,77 \div 3 = 0,59$ On calcule pour 4 kg $4 \times 0,59 = 2,36$

Le prix payé pour 4 kg est de 2,36 €

2) En additionnant si possible deux « colonnes » du tableau

Méthode: Exemple pour 7 kg

On connaît le prix payé pour 3 et 4 kg.

Comme 3 + 4 = 7, on additionne les prix payés

pour 3 et 4 kg : 1,77 + 2,36 = 4,13. Le prix payé pour 7 kg est de 4,13 €.

3) En multipliant si possible une « colonne » par un nombre

Méthode: Exemple pour 12 kg
On connaît le prix payé pour 3 kg.

Comme $3 \times 4 = 12$, on multiplie le prix payé

pour 3 kg par 4 : $1,77 \times 4 = 7,08$

Le prix payé pour 12 kg est de 7,08 €.

Quantité de pommes (en kg)	3	12
Prix payé (en €)	1,77	?
	x	4

4) En calculant la 4ème proportionnelle grâce au produit en croix

Méthode: Exemple pour 4 kg

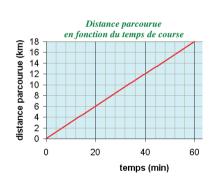
On calcule la 4^{ème} proportionnelle : $\frac{1,77\times4}{3}$ = 2,36.

Le prix payé pour 4 kg est de 2,36 €.

Quantité de pommes (en kg)	3	4
Prix payé (en €)	1,77	?

PROPORTIONNALITE – ECHELLES, POURCENTAGES, VITESSES

Grandeurs proportionnelles


Deux grandeurs sont proportionnelles si pour calculer les valeurs de l'une, on multiplie les valeurs de l'autre par un même nombre, le coefficient de proportionnalité.

Ex : Situations de proportionnalité dans la vie courante

- la quantité de farine dans un gâteau en fonction du nombre de personnes,
 - la distance sur une carte et la distance réelle.
- le prix payé pour un plein d'essence et le volume d'essence acheté.

Graphique

Les points obtenus dans une situation de proportionnalité sont situés sur une droite qui passe par l'origine du repère.

Résoudre un problème

Dans tous les cas, il faut repérer les grandeurs du problème et s'assurer qu'il y a proportionnalité. Puis :

- on fait un tableau avec les grandeurs proportionnelles et les unités s'il y en a.
- on complète le tableau avec les nombres du texte,
- on fait les calculs en indiquant la méthode choisie,
- on répond par une phrase.

Applications

Pourcentage

p % d'une quantité = $\frac{p}{100}$ x quantité = quantité x p : 100 $(\underline{ex}$: 20% de 78 = $\frac{20}{100}$ x 78) On peut aussi calculer les pourcentages dans un tableau de proportionnalité.

Echelle

Sur un plan à l'échelle, les distances réelles et les distances du plan sont proportionnelles. Le coefficient de proportionnalité est

distance sur le plan l'échelle = distance réelle

même

Remarque: Lors d'une réduction. l'échelle est inférieure à 1 (distance sur le plan < distance réelle). Lors d'un agrandissement. l'échelle est supérieure à 1 (distance sur le plan > distance réelle).

Mouvement uniforme

Lorsque la vitesse d'un mobile est constante. on dit que le mouvement est uniforme (=> régulier). Les distances parcourues et les durées correspondantes sont proportionnelles. Le coefficient est la vitesse du mobile.

Mesure du temps

On utilise la proportionnalité pour les durées exprimées en heures décimales.

4,57h ≠ 4h57min; 2,5h ≠ 2h50 min

Vitesse movenne

distance vitesse moyenne =

<=> distance = vitesse moyenne x temps Ex: Un piéton qui parcourt 14 km en 2h marche à la vitesse moyenne V = 14 / 2 = 7 km/h.

Changement d'unité de vitesse

Ex: Une voiture roule à 126 km/h. Et en m/s ?

$$V = \frac{126\ 000}{3\ 600} = 35\ m/s$$

Remarque:

Grandeurs composées

Les aires et volumes sont des « grandeurs produits » : A = longueur x longueur ou V = aire x longueur . Les vitesses et débits sont des « grandeurs quotients » : V = distance / temps ou D = volume / temps .

Ex d'unités: m², cm³ Ex d'unités: m/s ou m.s⁻¹, km/h ou km.h⁻¹

PROPORTIONNALITE - ECHELLES, POURCENTAGES, VITESSES

Exemples

Résoudre un problème

Dans une recette de gâteau, il faut 4 œufs pour 6 personnes.

Combien faut-il d'œufs pour 9 personnes ?

C'est une situation de proportionnalité,

les deux grandeurs sont le nombre d'œufs et de personnes.

Nombre d'œufs	4 \	?
Nombre de personnes	6	9

On utilise la 4ème proportionnelle :

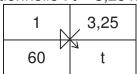
nombre d'œufs nécessaires : $\frac{9 \times 4}{6} = 6$

Il faut 6 œufs pour un gâteau de 9 personnes.

Calculer un pourcentage d'un nombre

Dans une bibliothèque de 1350 livres, 20% des ouvrages sont des bandes dessinées. Combien y a-t-il de BD?

On calcule : Nombre de BD = 20% de 1350 = 1350 x $\frac{20}{100}$,

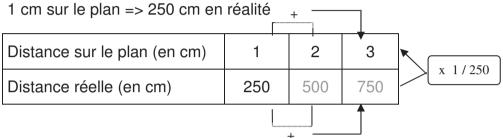

ou dans un tableau de proportionnalité :

tablead de propertionnante :			_
Nombre total d'ouvrages	100	1350	
Nombre de BD	20	³ ? •	:3

? =
$$\frac{1350}{5}$$
 = 270 II y a donc 270 BD dans la bibliothèque.

Mesure du temps

Exprimer 3,25 h en minutes. (\triangle 3,25 h \neq 3h 25min \triangle) Calcul avec la 4^e proportionnelle : t = 3,25 x 60 = 195 min



Echelles de réduction et d'agrandissement

A partir d'un plan à l'échelle $\frac{1}{250}$, calculer la distance réelle

représentée par 2 et 3 cm sur le plan.

On multiplie par 250 pour obtenir les distances réelles.

2 cm représentent en réalité 500 cm = 5 m, et 3 cm représentent 750 cm = 7,5m.

Mouvement uniforme

Une voiture roule à allure régulière. Elle parcourt 20 mètres chaque seconde. Combien parcourt-elle en 20s et en 60s ?

C'est un mouvement uniforme, le temps et la distance sont donc proportionnels.

Temps (en s) 1 20 60

Distance (en m) 20 400 1200

Vitesse moyenne

Qui a la plus grande vitesse moyenne (calculer en mètre par minute) ? Noah parcourt 1,6 km en 20 min.

Léo parcourt 250 m en 3 min.

Paul met 5 min pour faire 450 m.

Vitesse moyenne de Noah = 1600 : 20 = 80 m/minVitesse moyenne de Léo = $250 : 3 \approx 83,3... \text{ m/min}$

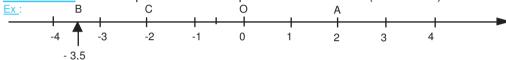
Vitesse moyenne de Paul = 450 : 5 = 90 m/min

Paul marche le plus vite en moyenne.

LES MATHS FACILES

DISTANCES ET REPERES

Repérage sur une droite


On utilise les nombres relatifs pour repérer des points sur une droite.

Abscisse: Sur une droite graduée,

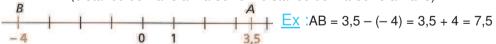
- chaque point est repéré par un nombre : l'abscisse, notée entre parenthèses,
- à chaque nombre correspond un point.

L'origine O a pour abscisse 0 (zéro). On écrit O (0).

Attention: Il ne faut pas confondre le point et son abscisse (un nombre).

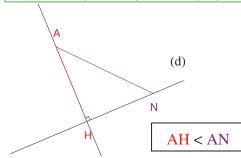
B a pour abscisse -3,5 : on écrit B (-3,5). A a pour abscisse 2 : on écrit A (2).

Remarque: Les nombres relatifs qui ont des signes contraires et la même distance à zéro sont des opposés.


Ex: A(2) et C(-2) O est le milieu du segment [AC].

Calculs de distance

<u>Distance entre deux points:</u> Distance de A à B = Longueur de [AB] = AB = BA = différence des abscisses = abscisse la plus grande – abscisse la plus petite

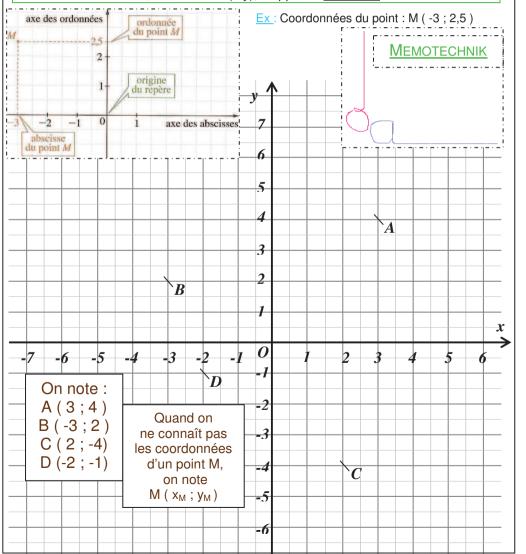

Remarques

- * La distance est toujours un nombre positif (On dit : il y a 20 km et non 20 km).
- * AB = BA (distance de Paris à Marseille = distance de Marseille à Paris).

Distance entre un point et une droite:

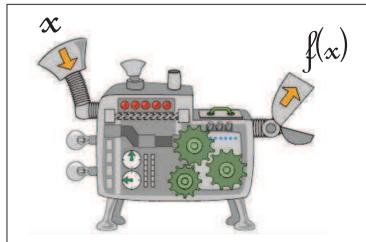
distance du point au pied de la perpendiculaire à la droite passant par ce point.

Ex: Distance de A à (d)
= distance de A au pied de la
perpendiculaire à (d) passant par A
= AH


Propriété (conséquence du Théorème de Pythagore)

La distance d'un point à une droite est la plus petite de toutes les distances de ce point à un point de la droite.

Repérage dans un plan


On quadrille un plan géométrique pour repérer la position de chaque point.

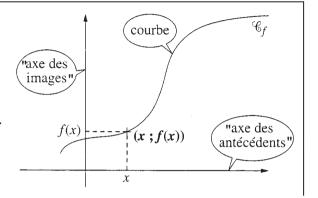
Repère orthonormé: (O,x,y) est constitué de deux droites perpendiculaires graduées avec la même unité de longueur. (Ox) et (Oy) s'appellent <u>les axes</u>. Chaque point peut être repéré par deux nombres relatifs: les <u>coordonnées</u>. La 1ère coordonnée, lue sur l'axe (Ox), s'appelle l'<u>abscisse</u>. La 2ème coordonnée, lue sur l'axe (Oy), s'appelle l'<u>ordonnée</u>.

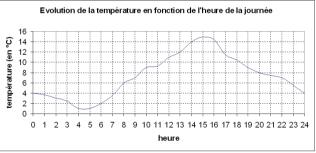
J' \ LES MATHS FACILES

MA BOITE A OUTILS MATHS-COLLEGE

FONCTION

Une <u>fonction</u> est un processus qui, à un nombre, fait correspondre un autre nombre unique en lui appliquant une suite d'opérations.


NOTION DE FONCTION


REPRESENTATION GRAPHIQUE

Lorsque l'on trace tous les couples de points (x; f(x)) correspondant à une fonction, on obtient sa représentation graphique.

Remarque:

On peut trouver une valeur approchée d'un antécédent en utilisant la représentation graphique. Pour trouver l'antécédent exact, il faut généralement résoudre une équation.

VOCABULAIRE

$$Ex$$
: $x \mapsto y = x + 7$

A chaque nombre x correspond une seule valeur y, son \underline{image} . On dit que « x a pour image x + 7» ou que « y est l'image de x ».

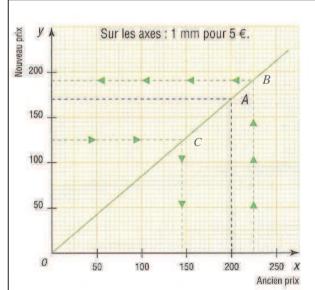
On peut aussi noter cette fonction f.

L'image de x se note alors f(x) et se lit « f de x ».

$$f: X \mapsto f(X)$$

$$Ex : f(x) = x + 7$$

x est appelé antécédent de f(x).

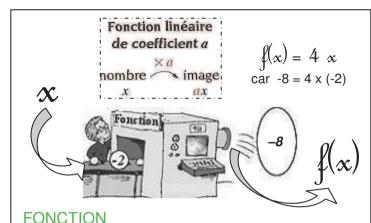

$$Ex : f(x) = x + 7$$

L'image de 5 est f(5) = 5 + 7 = 12.

Un antécédent de 12 est 5 car f(5) = 5 + 7 = 12.

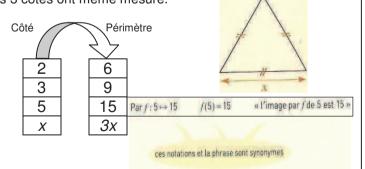
A RETENIR: f(x) est l'image de x par la fonction f.

x est un antécédent de f(x) par la fonction f.



POURCENTAGES

Ex: Pendant les soldes, les prix baissent de 15%. Le nouveau prix représente donc 85% de l'ancien : f(x) = 0,85 x.


Un article qui valait 200€ vaut maintenant 170€ (point A). Sur le graphique, on peut lire par exemple (voir les flèches): - le nouveau prix quand l'ancien est 225€: f(225) = 190 (point B). - l'ancien prix quand le nouveau

- l'ancien prix quand le nouveau est 125€ : f(150) = 125 (point C).

Une fonction linéaire f est la relation qui associe à tout relatif x le relatif y = f(x) = ax, où a est un nombre relatif donné. a est appelé le coefficient directeur de la fonction linéaire.

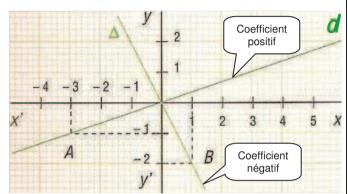
Ex: On veut calculer le périmètre d'un triangle équilatéral. Les 3 côtés ont même mesure.

A chaque valeur du côté, on peut faire correspondre la valeur du périmètre du triangle, c'est-à-dire son triple. $f: x \mapsto 3x$.

On a donc défini une fonction linéaire.

FONCTIONS LINEAIRES

LA REPRESENTATION GRAPHIQUE ...


... D'UNE FONCTION LINEAIRE EST UNE DROITE PASSANT PAR L'ORIGINE DU REPERE.

Remarque:

Une droite passant par l'origine du repère représente une situation de proportionnalité.

Donc...

Une fonction linéaire représente une situation de proportionnalité.

(d) est la représentation graphique de la fonction linéaire $f(x) = \frac{1}{3} x$.

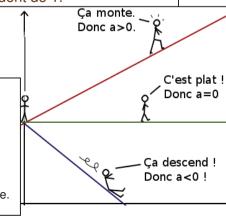
Le <u>coefficient</u> de la fonction f est $\frac{1}{2}$.

=> lorsque x augmente de 1, y augmente de $\frac{1}{3}$.

L'image de (-3) est $\frac{1}{3}$ x (-3) = -1 (point A).

(-1) est un antécédent de (-3).

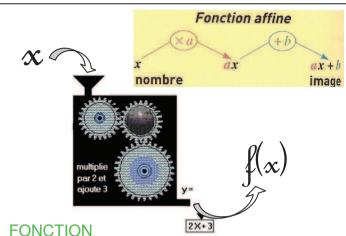
Ex:

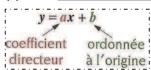

 (Δ) est la représentation graphique de la fonction linéaire g(x) = -2x.

Le coefficient de la fonction g est -2.

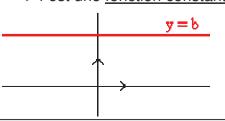
=> lorsque x augmente de 1. v diminue de 2.

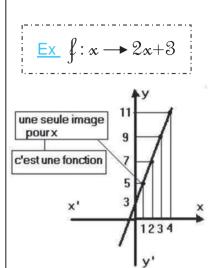
L'image de (1) est $-2 \times 1 = -2$ (point B).


(-2) est l'antécédent de 1.


Remarque:

Si a > 0, x \uparrow , y \uparrow . (f est croissante.) Si $a < 0, x \not , y \searrow$. (f est décroissante.) Si a = 0. y est toujours nul quand x varie.


Une <u>fonction affine</u> f est la relation qui associe à tout relatif x le relatif y = f(x) = ax + b, où a et b sont des nombres relatifs donnés. a est appelé le <u>coefficient directeur</u> b est appelé l'<u>ordonnée à l'origine</u>.

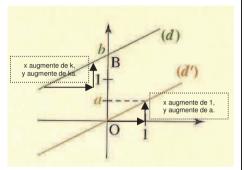

Cas particuliers:

Si b = 0,
$$f(x) = ax$$

=> f est une fonction linéaire.

Si
$$a = 0$$
, $f(x) = b$
=> f est une fonction constante.

FONCTIONS AFFINES



LA REPRESENTATION GRAPHIQUE ...

- ... D'UNE FONCTION AFFINE EST UNE DROITE :
- qui passe par le point (0; b) car f(0) = b,
- qui est parallèle à la droite représentant la fonction linéaire associée g(x) = ax.

Remarque:

Une fonction affine ne représente pas une situation de proportionnalité (sauf si b = 0), mais la variation de y est proportionnelle à la variation de x.

On parle de « proportionnalité des accroissements. »

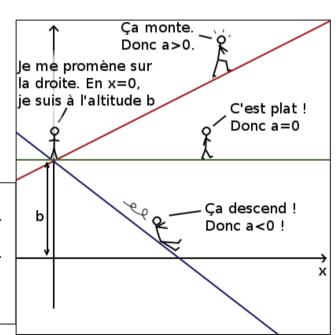
Application: Droite passant par 2 points

La droite passe par A (2;7) et B (4;11). On cherche a et b.

$\frac{\text{de x}}{\text{4-2=2}}$	de y 2 11 - 7 = 4	Pour trouver a $donc \ a = \frac{4}{2} = 2$
X _B – X _A	y _B – y _A	$donc \ a = \frac{y_B - y_A}{x_B - x_A}$

Pour trouver b...

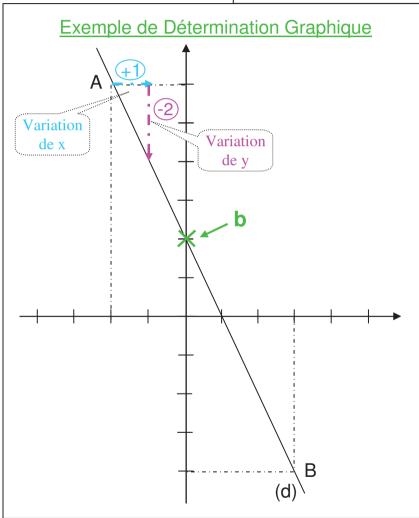
On résout ensuite une équation grâce aux coordonnées d'un point. Ex: 11 = a x 4 + b, d'où 11 = 2 x 4 + b donc b = 3.


Remarque:

Si a > 0, la droite « monte » : y / quand x / . (f est croissante.)

Si a < 0, la droite « descend » : y \ quand x \ \frac{1}{2}.

(f est décroissante.)


Si a = 0, la droite est « horizontale » : => y ne varie pas quand x varie.

METHODOLOGIE

Déterminer la fonction affine représentée par une droite...

Exemple de Détermination Numérique

A et B sont des points de la droite (d).

Variation de x
$$= X_B - X_A$$

$$f(x) = \frac{y_B - y_A}{x_B - x_A}$$
 $x + ordonnée à l'origine$

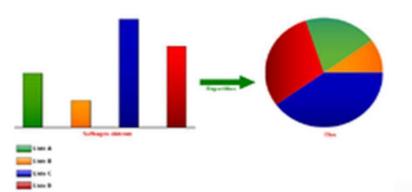
$$f(x) = \frac{(-4) - (+6)}{(+3) - (-2)} \times + b$$

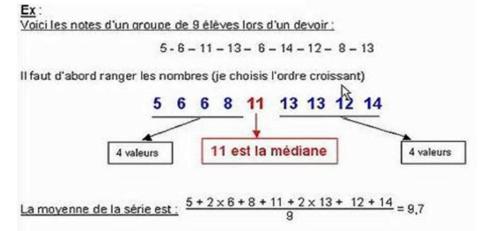
$$f(x) = \frac{-10}{5} \quad x + b$$

$$f(x) = \frac{-2}{1} x + b$$

Trouver b:

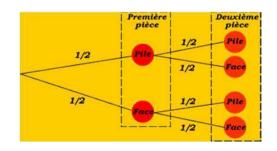
$$-4 = -2 \times 3 + b$$
 => On utilise par exemple le point B (3; -4).
 $-4 = -6 + b$ On résout l'équation
 $b = -4 + 6 = 2$ pour trouver la valeur de b.


$$f(x) = \frac{-2}{1} x + 2$$


La fonction f représentée par la droite (d) est

pour trouver la valeur de b.

$$f(x) = -2x + 2$$



Numérique

Statistiques

ORGANISATION DE DONNEES

Notes des élèves de 6eE

[02] [24] [45] [68] [8.10] [0.12][12,14][1415][16,18][18,20]

Statistiques

Série statistique : Liste de données

Ex: liste de réponses des personnes interrogées pour un sondage

- liste des notes des élèves passant le brevet en 2010 en maths
- liste des âges des salariés d'une entreprise ...etc...

Organisation: On présente souvent les séries statistiques dans un tableau.

Effectif d'une valeur : Nombre de fois où elle apparait

Effectif total: Effectif de toutes les données = Somme de tous les effectifs.

Ex : L'effectif des salariés de 32 ans est le nombre de salariés ayant 32 ans.

Classes

Regroupement

<u>Classes</u>: Si les données sont <u>dispersées</u> (trop nombreuses), on peut les regrouper en groupes de données pour faciliter leur lecture : les classes.

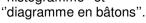
Amplitude de la classe = plus grande valeur - plus petite valeur

Ex: L'âge des personnes interrogées peut-être regroupé en classes de 10 ans d'amplitude : de 0 à 9 ans, de 10 à 19 ans, de 20 à 29 ans, de 30 à 39 ans ...etc...

ATTENTION

Chaque valeur doit être dans une classe et une seule.

En utilisant des classes, les résultats sont plus simples mais moins précis.

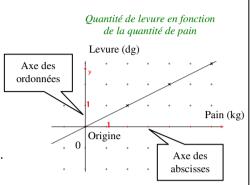

Effectif de la classe = Somme des effectifs de toutes les données de la classe

Histogramme

Vocabulaire: Dans ce cas, on peut représenter la série a statistique sous la forme d'un 'diagramme en rectangles', sappelé histogramme. Si les classes ont la même amplitude, les rectangles ont la même largeur.

Remarque:

Les ordinateurs confondent "histogramme" et



Graphiques Graphique cartésien ou courbe

On présente une grandeur <u>en ordonnée</u> en fonction d'une autre en abscisse.

Les axes sont gradués de façon régulière.

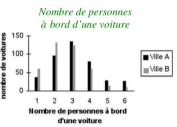

Cela permet de représenter une évolution, comme dans le carnet de santé par exemple.

Diagramme en bâtons

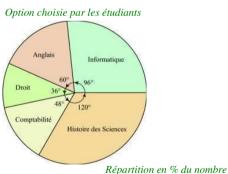
Les hauteurs des barres sont proportionnelles aux effectifs qu'ils représentent.

Si besoin, on complète un tableau de proportionnalité pour calculer la hauteur de chaque "bâton".

Diagrammes circulaires

Les angles des secteurs sont proportionnels aux effectifs qu'ils représentent.

Le coefficient de proportionnalité est


- pour un diagramme circulaire :

$$coef = \frac{360}{Effectif total}$$

- pour un diagramme semi-circulaire :

$$coef = \frac{180}{Effectif total}$$

On doit compléter un tableau de proportionnalité pour calculer la mesure de chaque angle.

STATISTIQUES

PROBABILITES

Les STATISTIQUES sont le moyen de traiter une grande quantité de données (par exemple des réponses à une question ou des évènements qui se sont produits) pour les rendre lisibles et utilisables grâce aux maths.

C'est l'analyse du PASSE.

On analyse le comportement d'une série de données, en calculant plusieurs valeurs spéciales (lorsque les résultats sont des nombres) qui la caractérisent. L'étendue et l'écart interquartile précisent la **dispersion** des autres données. La moyenne, la médiane et les quartiles précisent leur position.

Fréquence d'une donnée ou d'une classe

Effectif de la donnée ou de la classe _ Nombre de fois où la donnée apparaît Nombre total de données

Chaque fréquence est comprise entre 0 et 1. On peut l'exprimer sous forme de %. La somme des fréquences de toutes les données est égale à 1 (ou à 100%).

Movenne

On peut utiliser 2 méthodes de calcul.

Moyenne = Somme de toutes les données Nombre de données

Moyenne pondérée => Lorsque les valeurs se répètent souvent, ou lorsque les données sont regroupées en classe, on calcule la moyenne à l'aide des effectifs que l'on utilise comme coefficients.

Etendue = Plus grande valeur - Plus petite valeur

C'est une différence.

Elle partage la série en deux parties de même effectif. Médiane

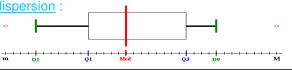
Il y a autant de valeurs avant qu'après, elle ne dépend pas des valeurs extrêmes. Pour la trouver, on range les éléments dans l'ordre croissant ou décroissant.

Quartiles Ils partagent la série en quatre parties égales.

Premier quartile Q1 : plus petite valeur de la série pour laquelle au moins 25% des données sont inférieures ou égales à Q1.

Troisième quartile Q3 : plus petite valeur de la série pour laquelle au moins 75% des données sont inférieures ou égales a Q3.

Pour les trouver : Si le nombre est données est divisible par 4.


on prend la valeur de la série correspondante, sinon on prend la valeur suivante. Environ la moitié des valeurs d'une série ordonnée sont comprises Q1 et Q3.

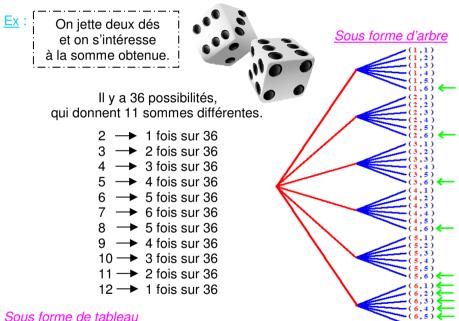
La différence Q3 – Q1 s'appelle l'écart interquartile.

!!! Les quartiles sont des données de la série, mais pas forcément la médiane. !!!

Caractéristiques de position et de dispersion :

Elles peuvent être représentées sur un "diagramme en boîte" ou "diagramme à moustache".

Les PROBABILITES sont le moyen de calculer la chance qu'un évènement a de se produire parmi toutes les possibilités ; le plus souvent, les calculs mathématiques sont très simples, mais il faut beaucoup de logique.


C'est l'analyse du FUTUR.

Probabilité d'un évènement

= Nombre de cas favorables Nombre de cas possibles = Nombre d'issues favorables Nombre d'issues possibles

Loi de probabilité

Ensemble des probabilités données pour chaque évènement

Sous forme de tableau

Eventualités	2	3	4	5	6	7	8	9	10	11	12
Probabilités	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Calcul de Proba : Quelle est la probabilité que la somme soit un multiple de 3 ? Cet évènement se produit si la somme est 3, 6, 9, 12.

Donc Probabilité (Somme est multiple de 3) = $\frac{2}{36} + \frac{5}{36} + \frac{4}{36} + \frac{1}{36} = \frac{12}{36} = \frac{1}{3}$

Autre Calcul: Quelle est la probabilité de tirer un 6 (et un seul) ? (cf flèches)

VRAI OU FAUX ?: « A la loterie, 100% des gagnants ont tenté leur chance. »

STATISTIOUES

PROBABILITES

EN PRATIQUE ...

Un professeur rend un devoir aux élèves de 3ème.

Voici la liste des notes, dans l'ordre croissant::

2 3 3 5 6 8 9 9 10 11 12 12 13 13 13 15 16 16 17 19 19

Ceci constitue une série de données statistiques.

La population étudiée est "les élèves d'une classe de 3ème".

Le caractère étudié est la note du devoir rendu.

On a relevé 21 données, donc l'effectif total est 21

Les valeurs du caractères sont 0;1;2;3;.... ; 20

Movenne

Il v a 21 notes.

 $\frac{1^{\text{ere}} \text{ méthode}}{\text{Nombre de données}} = \frac{231}{21} = 11$

2^{ème} méthode :

Note	2	3	5	6	8	9	10	11	12	13	15	16	17	19
Effectif	1	2	1	1	1	2	1	1	2	3	1	2	1	2
Fréquence	0,05	0,09	0,05	0,05	0,05	0,09	0,05	0,05	0,09	0,15	0,05	0,09	0,05	0,09

Movenne Pondérée

$$=(2 + 3x2 + 5 + 6 + 8 + 9x2 + 10 + 11 + 12x2 + 13x3 + 15 + 16x2 + 17 + 19x2) : 21$$

= $(2 + 6 + 5 + 6 + 8 + 18 + 10 + 11 + 24 + 39 + 15 + 32 + 17 + 38) : 21$
= $231 : 21 = 11$

Etendue

Etendue = Note max - Note min = 19 - 2 = 17 points

Médiane et Quartiles

Il y a 21 notes. La médiane est la 11 ème note, il y a 10 données avant et 10 après. (Si on a un nombre pair de données, on peut prendre n'importe quelle valeur entre les deux du milieu. Le plus souvent, on prend la moyenne.)

21 :
$$4 = 5,25 => Q1$$
 est la $6^{\text{ème}}$ valeur.

21 :
$$4 = 5,25 \Rightarrow Q1$$
 est la $6^{\text{ème}}$ valeur.
5,25 x 3 = 15,75 $\Rightarrow Q3$ est la $16^{\text{ème}}$ valeur.

Ecart interquartile

Q3 - Q1 = 15 - 8 = 7 points

EN PRATIQUE ...

Une expérience est dite aléatoire lorsqu'on ne peut pas en prévoir avec certitude le résultat.

Ex : on jette un dé à 6 faces et on lit le nombre de la face supérieure. On appelle issue d'une expérience aléatoire tout résultat de cette expérience.

Tout ensemble d'issues est appelé événement.

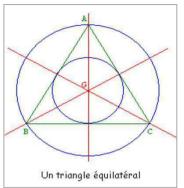
- Un événement élémentaire contient une seule issue.
- L'événement certain contient toutes les issues.
- L'événement impossible ne contient aucune issue.

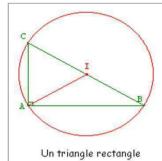
On cherche à définir la probabilité d'un événement A, c'est à dire les chances que l'événement A se réalise lors d'une expérience aléatoire. Cette probabilité sera notée P (A).

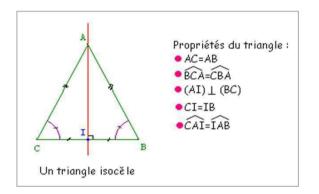
Si notre dé n'est pas truqué, il semble raisonnable de penser que chaque face a la même chance qu'une autre d'être tirée. Soit une chance sur 6.

La probabilité de tirer 4 est P(4) = 1/6.

=> Comme chaque événement élémentaire a la même probabilité, on dit qu'il s'agit d'une situation d'équiprobabilité.


La probabilité de tirer 8 est P(8) = 0.


=> La probabilité de l'événement impossible est égale à 0.


La probabilité de tirer un nombre inférieur à 10 est P(inférieur à 10) = 1.

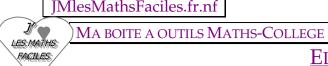
=> La probabilité d'un événement certain est égale à 1.

Un moyen de définir une probabilité est d'effectuer un grand nombre de tirages et d'attribuer à chaque événement élémentaire une probabilité égale à sa fréquence statistique.

Géométrie

FACILES:

Eléments Usuels


Quadrilatère qui a:

· 4 angles droits

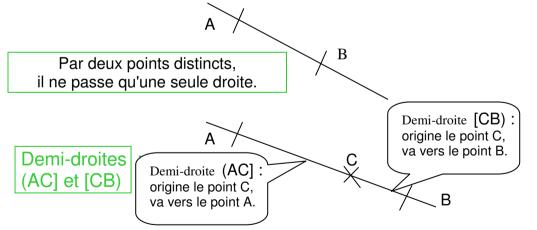
Quadrilatère qui a:

· 4 côtés de même longueur

ELEMENTS DE GEOMETRIE, NOTATIONS ET DEFINITIONS

Géométrie plane : géométrie dans le plan.

Plan : surface infinie, symbolisée par la feuille de papier (limitée à ses bords).

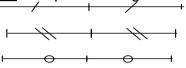

Point | Lieu (ni longueur ni épaisseur), nommé par une majuscule. représenté par une croix ou une intersection de droites.

Exemple: хА х В x C

On utilise : \times

Points alignés : Des points sont alignés s'ils sont sur une même droite.

Droite (AB) Infinité de points alignés. On en trace une partie à la règle. Elle est illimitée, on peut prolonger son dessin si nécessaire.


Segment [AB] Partie de la droite (AB) formée de tous les points situés entre A et B ([AB] et [BA] => même segment).

Extrémités : A et B

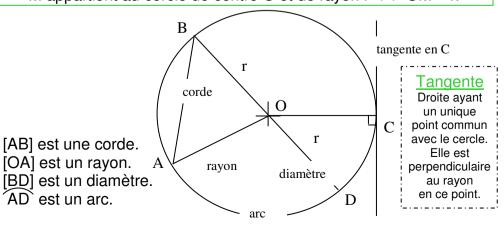
Distance AB | Distance entre les points A et B

Segment : constitué d'une infinité de points et mesurable à la règle Droite et demi-droite : infinies => n'ont pas de longueur

<u>Coder la figure</u>: marquer les longueurs égales avec des signes

(milieu du segment)

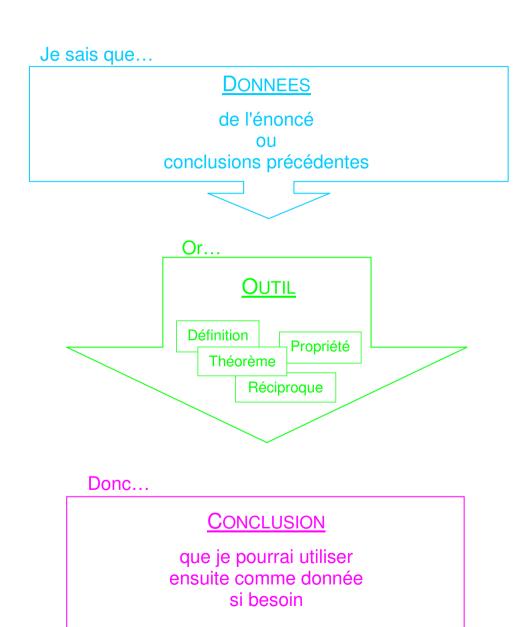
!!! Le milieu est un point. La moitié est un nombre (la moitié de la longueur). !!!


Symbole ∈ : signifie 'appartient à' $Ex: C \in (AB)$

Symbole : signifie 'n'appartient pas à'

Polygone | Figure plane fermée dont les côtés sont des segments.

Cercle Tous les points situés à la même distance du centre.


M appartient au cercle de centre O et de rayon $r \ll OM = r$.

FACILES

METHODOLOGIE .

PRINCIPE DE LA DEMONSTRATION

POLYGONES

Nature des polygones

Le nombre de sommets (ou de côtés, ou d'angles) indique la nature du polygone.

Nombre de sommets	Nature du polygone
3	Triangle
4	Quadrilatère
5	Pentagone
6	Hexagone
7	Heptagone
8	Octogone
	Ennéagone
9	ou Nonagone
10	Décagone
12	Dodécagone

Notation

Les polygones ont un nom : il est donné par la lecture des sommets <u>en suivant les côtés</u>.

On peut commencer par n'importe lequel des sommets, et tourner dans l'un ou l'autre sens autour de la figure.

Ex: ABCD ou BCDA ou DABC ou DCBA ...etc...

Vocabulaire

Deux <u>côtés</u> <u>consécutifs</u> d'un polygone sont deux côtés qui ont un sommet en commun.

Deux <u>sommets consécutifs</u> d'un polygone sont deux extrémités d'un côté. Une <u>diagonale</u> dans un polygone est un segment dont les extrémités sont deux sommets qui ne sont pas consécutifs.

Polygone régulier

Un polygone régulier est un polygone dont tous les côtés ont la même longueur, et tous les angles la même mesure.

Ex: Triangle équilatéral, Carré ...etc...

!!! Le rectangle et le losange ne sont pas des polygones réguliers. !!!

Cercle circonscrit

Il existe un cercle passant par tous les sommets d'un polygone régulier, c'est le cerce circonscrit. Son centre est le centre du polygone régulier.

Quelques polygones particuliers...

Triangle équilatéral

Un triangle équilatéral est un triangle dont les trois côtés ont la même longueur.

Triangle isocèle

Un triangle isocèle est un triangle qui possède deux côtés de même longueur. Son autre côté s'appelle la base, et le sommet opposé sommet principal.

Triangle rectangle

Un triangle rectangle est un triangle qui a un angle droit. Le côté opposé s'appelle l'hypoténuse.

Triangle rectangle isocèle

Un triangle rectangle isocèle est un triangle rectangle et isocèle, donc un triangle qui a un angle droit et deux côtés de même longueur.

Parallélogramme

Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles.

Rectangle

Un rectangle est un quadrilatère qui a quatre angles droits.

<u>Losange</u>

Un losange est un quadrilatère dont les quatre côtés ont la même longueur.

Carré

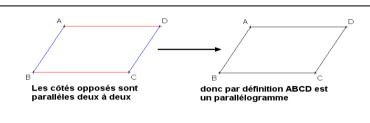
Un carré est un quadrilatère qui a quatre côtés de même longueur et quatre angles droits.

Trapèze

Un trapèze est un quadrilatère possédant deux côtés parallèles, les bases.

Cerf-volant

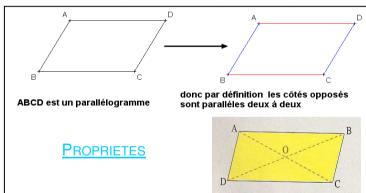
Un cerf-volant est un quadrilatère ayant deux paires de côtés consécutifs de même longueur.



J/W UES MATHS FACTUES

PARALLELOGRAMMES

<u>Parallélogrammes</u>


MA BOITE A OUTILS MATHS-COLLEGE

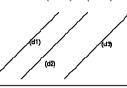
DEFINITION

Un parallélogramme ABCD est un quadrilatère dont les côtés opposés sont parallèles : (AB) // (DC) et (AD) // (BC)

Propriétés des parallélogrammes

Si ABCD est un parallélogramme, alors :

- ses côtés opposés sont parallèles.
 - (AB) // (DC) et (AD) // (BC)
- ses côtés opposes sont égaux.


AB = DC et AD = BC

- ses diagonales se coupent en leur milieu. [AC] et [BD] se coupent en O.
- ses angles opposés sont égaux et deux angles consécutifs sont supplémentaires.

 $\overrightarrow{A} = \overrightarrow{C}$, $\overrightarrow{B} = \overrightarrow{D}$ et $\overrightarrow{A} + \overrightarrow{B} = 180^{\circ}$

RAPPEL On utilise souvent

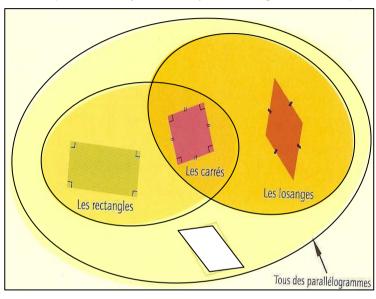
Si (d1)//(d2) et (d3)//(d1) alors (d3)//(d2)

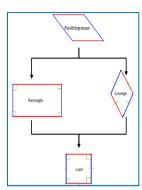
RAPPEL

On utilise souvent:

 $Si~(d1)\perp(d)$ et $(d2)\perp(d)$ alors (d1)//(d2)

Si (d1)//(d2) et (d)⊥(d1) alors (d)⊥(d2)

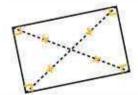



Rappel

Un carré est un rectangle et un losange.

Familles de parallélogrammes

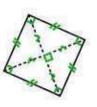
(Quadrilatères ayant les côtés parallèles et égaux deux à deux)



Propriétés des parallélogrammes particuliers

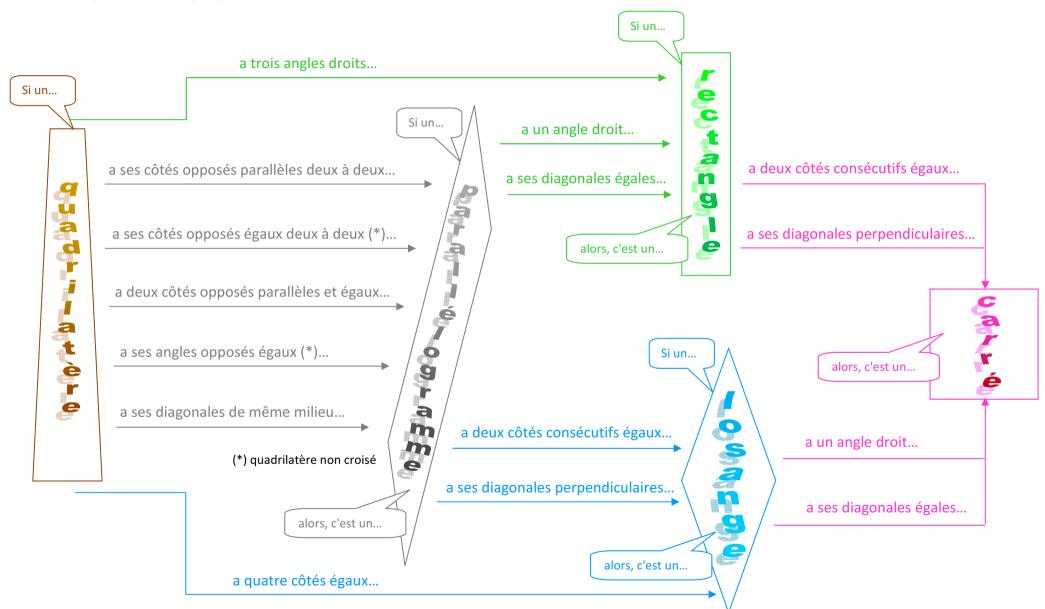
Si un quadrilatère est un losange, alors :

- ses côtés sont de la même longueur
- ses diagonales se coupent en leur milieu et sont perpendiculaires.



Si un quadrilatère est un rectangle, alors :

- ses côtés consécutifs sont perpendiculaires
- ses diagonales se coupent en leur milieu et sont de la même longueur.

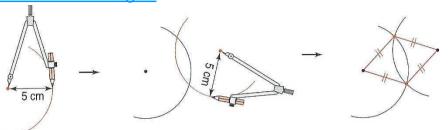

Si un quadrilatère est un carré, alors :

- ses côtés consécutifs sont perpendiculaires et de même longueur
- ses diagonales se coupent en leur milieu, sont perpendiculaires et de même longueur.

PARALLELOGRAMMES

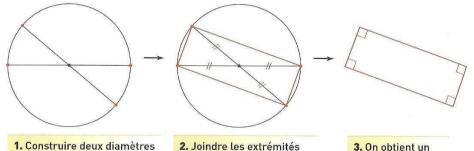
Récapitulatif des propriétés : Comment démontrer ?...

LES MATHS


GEOMETRIE - ELEMENTS USUELS 4

CONSTRUIRE ET RECONNAITRE UN OUADRILATERE (POLYGONE A 4 COTES) Je construis ...

COMPLEMENT


Je reconnais ...

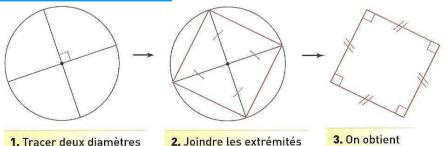
Je construis un losange :

- 1. Tracer un arc de cercle de 5 cm de rayon.
- 2. Puis un autre coupant le premier en deux points.
- 3. On obtient le losange souhaité.

Je construis un rectangle :

quelconques d'un cercle.

des diamètres.


rectangle.

un carré.

Je construis un carré:

perpendiculaires

d'un cercle.

des diamètres.

Je reconnais un parallélogramme

Si un quadrilatère

a ses côtés opposés parallèles. alors c'est un parallélogramme.

Si un quadrilatère non croisé a deux côtés opposés parallèles et de même longueur. alors c'est un parallélogramme.

Si un quadrilatère a ses diagonales qui se coupent en leur milieu, alors c'est un parallélogramme.

Si un quadrilatère non croisé a ses côtés opposés de même longueur, alors c'est un parallélogramme.

Je reconnais un rectangle

Si un quadrilatère a trois angles droits. alors c'est un rectangle.

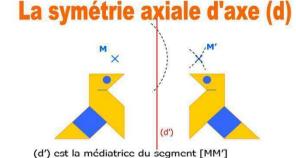
Si les diagonales d'un parallélogramme sont de même longueur. alors c'est un rectangle.

Si un parallélogramme a un angle droit. alors c'est un rectangle.

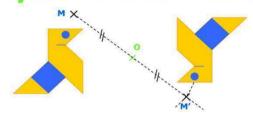
Je reconnais un losange

Si un quadrilatère a quatre côtés de même longueur, alors c'est un losange. Si un parallélogramme a ses diagonales perpendiculaires. alors c'est un losange.

Si un parallélogramme a deux côtés consécutifs de même longueur. alors c'est un losange.

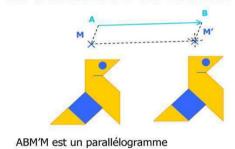

Je reconnais un carré

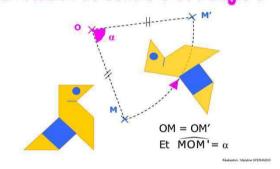
Si un quadrilatère est à la fois un rectangle et un losange, alors c'est un carré.



① Transform Borizontal Edgs ② Botale 45*

LES TRANSFORMATIONS





O est le milieu du segment [MM']

La translation de vecteur AB

La rotation de centre O et d'angle q

Géométrie

GEOMETRIE - TRANSFORMATIONS 0.

Prereouis

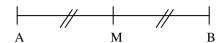
LA MEDIATRICE

Points plus

proches de A

que de B.

Rappel: Milieu et longueur d'un segment


Longueur de [AB] : distance de A à B

$$Ex$$
: AB = 5 cm

ES MATHS

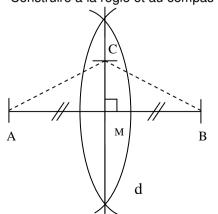
FACILES

$$MA = MB = 5 : 2 = 2,5 cm$$

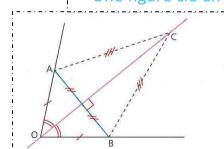
Milieu d'un segment : point du segment situé à égale distance des extrémités

<u>Propriété</u>: On a aussi MA = MB = AB : $2 = \frac{AB}{2}$

Médiatrice d'un segment


<u>Médiatrice d'un segment</u> : droite qui passe par le milieu du segment et est perpendiculaire à ce segment.

Construction


- Choisir un écartement du compas supérieur à la moitié de la longueur du segment.
- Tracer un arc de cercle de centre une des extrémités du segment.
- Garder le même écartement, et tracer un arc de cercle de centre l'autre extrémité du segment.
- Tracer la médiatrice qui est la droite qui passe par les 2 points d'intersection.

Ex: Soit un segment [AB] et une droite d.

Construire à la règle et au compas le milieu M du segment [AB] et sa médiatrice.

Une figure clé en Géométrie...

- La droite (OC) est la médiatrice du segment [AB].
- La demi-droite [OC) est la bissectrice de l'angle AOB.
- La droite (OC) est l'axe de symétrie de la figure.

<u>Propriété</u>: Si un point appartient à la médiatrice du segment [AB], alors il est équidistant des points A et B (c.à.d. à la même distance de A et de B). Ex: (d) est la médiatrice de [AB]. $C \in (d)$. On a donc CA = CB.

<u>Propriété réciproque</u>: Si le point C est équidistant des points A et B, c'est à dire si CA = CB, alors C appartient à la médiatrice du segment [AB].

Points plus

proches de B

Application de la médiatrice

Tracer un triangle ABC.
Tracer les 3 médiatrices des côtés.
Appeler I leur point d'intersection.
Tracer le cercle de centre I
passant par un des sommets.

que de A.

A

A

A

Vecebulaire

<u>Vocabulaire</u>

Ce cercle passe par les 3 sommets. Il s'appelle le cercle circonscrit au triangle.

Démonstration

I appartient à la médiatrice de [AB] donc AI = BI, I appartient à la médiatrice de [BC] donc BI = CI I appartient à la médiatrice de [AC] donc AI = CI

CONCLUSION:

On a donc AI = BI = CI. A, B, C sont sur le cercle de centre I et de rayon [IA].

SYMETRIE AXIALE

Le mot symétrie vient du grec syn : "avec" et metron : "mesure".

RAPPEL: Médiatrice

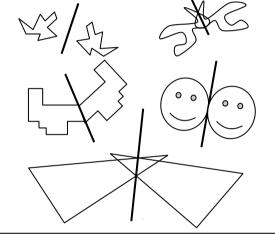
La médiatrice d'un segment est la droite qui

passe par le milieu du segment est perpendiculaire à ce segment.

GEOMETRIE - TRANSFORMATIONS 1. SYMETRIE CENTRALE

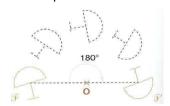
RAPPEL: Propriété

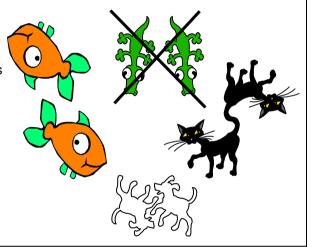
Tous les points de la médiatrice de [AB] sont équidistants de A et de B (c'est à dire à la même distance de A et de B).


Si C appartient à la médiatrice, on a donc CA = CB.

La symétrie axiale

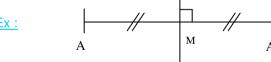
C"est l'effet miroir. Deux figures sont symétriques par rapport à une droite (d) lorsqu'elles se superposent parfaitement par pliage selon cette droite (d).





La symétrie centrale

C"est un demi-tour. Deux figures sont symétriques par rapport à un point O lorsqu'elles se superposent parfaitement par demi-tour autour du point O.



Symétrie d'un point par rapport à une droite

Deux points A et A' sont symétriques par rapport à une droite (d) si d est la médiatrice du segment [AA'].

Vocabulaire

A' est l'image de A dans la symétrie axiale d'axe (d).

d

Remarque

Remarque

Tout point de (d) est son propre symétrique.

Symétrie d'une figure par rapport à une droite

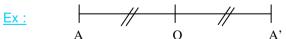
Deux figures sont symétriques par rapport à une droite (d) si ces deux figures se superposent exactement par pliage selon cette droite.

Vocabulaire

(d) est appelé axe de symétrie.

F' est l'image de F dans la symétrie axiale par rapport à (d).

F est aussi l'image de F' par rapport à l'axe (d).


(=> F et le symétrique de F' sont confondus.)

Symétrie d'un point par rapport à un point

Deux points A et A' sont symétriques par rapport à un point O si O est le milieu du segment [AA'].

Vocabulaire

A' est l'image de A dans la symétrie centrale de centre O.

O est son propre symétrique.

Symétrie d'une figure par rapport à un point

Deux figures sont symétriques par rapport à un point O si l'on passe de l'une à l'autre en effectuant un demi-tour autour de ce point.

Vocabulaire

O est appelé centre de symétrie.

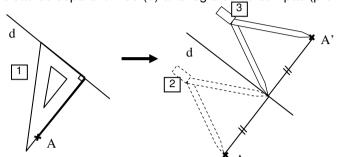
F' est l'image de F dans la symétrie centrale par rapport à O.

F est aussi l'image de F' par rapport au centre O.

(=> F et le symétrique de F' sont confondus.)

SYMETRIE AXIALE

GEOMETRIE - TRANSFORMATIONS 1.


SYMETRIE CENTRALE

Méthode de construction

Symétrie d'un point A

- Tracer la droite perpendiculaire à (d) passant par A grâce à l'équerre,

- Reporter la distance séparant A de (d) à la règle ou au compas (préférable).

Symétrie d'une figure

Si la figure est reproductible à la règle et au compas On construit l'image de ses points caractéristiques.

- Choisir des points représentatifs,
- Construire leur symétrique,
- Les relier comme sur la figure initiale (même ordre).

Si la figure est reproductible à main levée On utilise un calque.

- Choisir quelques points et construire leur symétrique par rapport à l'axe.
- Reporter la figure grâce aux points en superposant le calque.

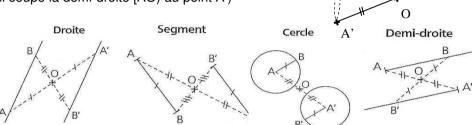
Propriété:

La symétrie axiale conserve

- l'alignement des points,
- la mesure des longueurs, donc des périmètres,
- la mesure des angles,
- la mesure des aires, puisque les figures se superposent.

Image d'une figure : figure ayant les mêmes propriétés et les mêmes dimensions. Elle est inversée. La symétrie axiale inverse le sens des figures.

Symétrique d'une droite : une droite


Symétrique d'un segment : un segment de même longueur

<u>Symétrique d'une demi-droite</u>: une demi-droite d'origine A' symétrique de A <u>Symétrique d'un cercle</u>: un cercle de même rayon et de centre O' image de O <u>Symétrique d'un rectangle</u>: un rectangle

Symétrique d'un angle : On construit les symétriques des deux demi-droites.

Méthode de construction Symétrie d'un point A

- Tracer la demi-droite [AO),
- Reporter sur la demi-droite la distance AO. (Tracer l'arc de cercle de centre O et de rayon OA, il coupe la demi-droite [AO) au point A')

Symétrie d'une figure

Si la figure est reproductible à la règle et au compas On construit l'image de ses points caractéristiques.

- Choisir des points représentatifs,
- Construire leur symétrique,
- Les relier comme sur la figure initiale (même ordre).

Si la figure est reproductible à main levée On utilise un calque.

- Choisir quelques points et construire leur symétrique par rapport au centre.
- Reporter la figure grâce aux points en superposant le calque.

Propriété:

La symétrie centrale conserve

- l'alignement des points,
- la mesure des longueurs, donc des périmètres,
- la mesure des angles,
- la mesure des aires, puisque les figures se superposent.

Image d'une figure : figure ayant les mêmes propriétés et les mêmes dimensions. Elle est retournée. La symétrie centrale retourne le sens des figures.

Symétrique d'une droite : une droite parallèle

Symétrique d'un segment : un segment parallèle et de même longueur Symétrique d'une demi-droite : une demi-droite parallèle et de sens contraire Symétrique d'un cercle : un cercle de même rayon et de centre O' image de O Symétrique d'un rectangle : un rectangle

Symétrique d'un angle : On construit les symétriques des deux demi-droites.

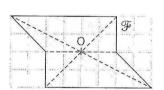
LES MATHS FACILES

AXES ET CENTRES DE SYMETRIE

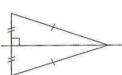
Axe de symétrie

Une figure F admet un axe de symétrie d lorsque la figure symétrique de F par rapport à d est la figure F elle-même.

Elle se superpose à elle-même par pliage selon la droite d.


Centre de symétrie

Une figure F admet un centre de symétrie O lorsque la figure symétrique de F par rapport à O est la figure F elle-même.


Elle se superpose à elle-même par demi-tour autour du point O.

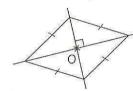
Cercle de centre O

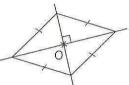
Une figure a 0 ou 1 centre de symétrie (sauf les droites). Elle peut avoir plusieurs axes de symétrie.

Parallélogramme

Triangle isocèle

Rectangle




Triangle équilatéral

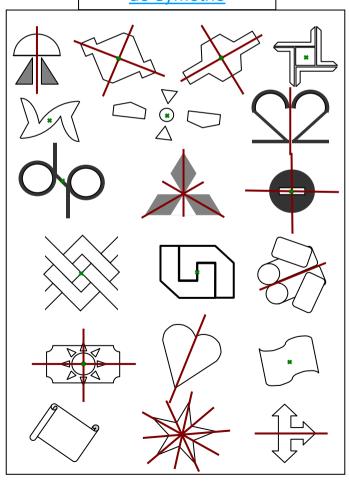

Losange

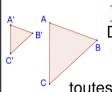
Carré

Axes de symétrie	Figure	Centre de symétrie
Elle-même Toutes les droites perpendiculaires	Droite	Tous ses points (seule figure à en avoir une infinité)
1 médiatrice de sa base = bissectrice de l'angle au sommet principal	Triangle isocèle	/
3 médiatrices des côtés = 3 bissectrices des angles	Triangle équilatéral	/
Tous les diamètres	Cercle de centre O	Centre du cercle
/	Parallélogramme	Point d'intersection des diagonales
2 médiatrices des côtés	Rectangle	Point d'intersection des diagonales
2 diagonales	Losange	Point d'intersection des diagonales
2 diagonales + 2 médiatrices des côtés	Carré (losange + rectangle)	Point d'intersection des diagonales

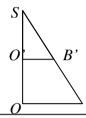
Application:

Dans chaque cas, tracer le centre de symétrie, le ou les axes de symétrie s'il y en a.





Quelques Exemples d'axes et centres de symétrie



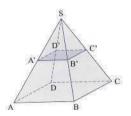
AGRANDISSEMENTS ET REDUCTIONS

Transformations à l'échelle k

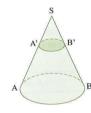
Dans un agrandissement (si k > 1) ou une réduction (si 0 < k < 1) de rapport k (ou à l'échelle k), toutes les longueurs restent proportionnelles.

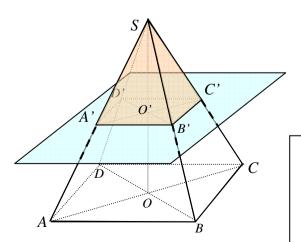
Effet sur les dimensions :

Ex : O'B' est une réduction de OB. On se trouve dans la situation de Thalès. Il y a donc le même rapport (l'échelle) entre les longueurs obtenues et initiales.


Conséquence sur les mesures :

- Les longueurs sont multipliées par k.
- Les aires sont multipliées par k^2
- Les volumes sont multipliés par k^3 .
- Les angles sont conservés.


Explication:

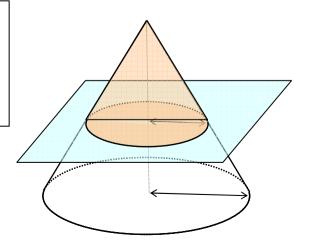

Les aires se calculent en multipliant deux dimensions qui ont été multipliées par k, elles seront donc multipliées par k². Les volumes se calculent en multipliant trois dimensions qui ont été multipliées par k, ils seront donc multipliés par k^3 .

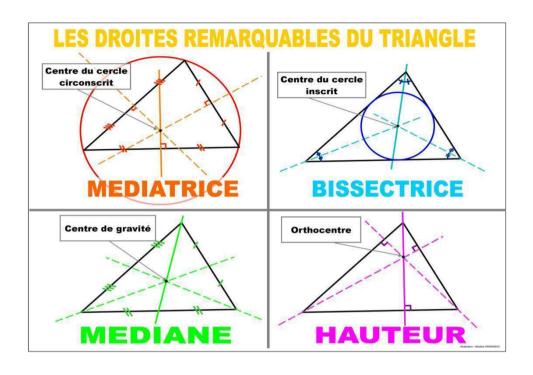
CAS PARTICULIER : LA PYRAMIDE ET LE CONE

Pour obtenir une réduction, on effectue une section par un plan parallèle à la base. Pour faire les calculs, on utilise généralement le théorème de Thalès. Remarque La section est une réduction du polygone ou du cercle de base. Elle fait apparaître au-dessus une pyramide ou un cône réduit, et en-dessous un tronc de pyramide ou un tronc de cône.

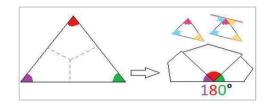
Le petit cône est une réduction du grand.

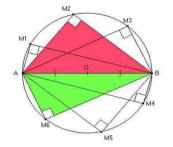
Echelle de réduction : $k = \frac{SA'}{SA}$ (k < 1)

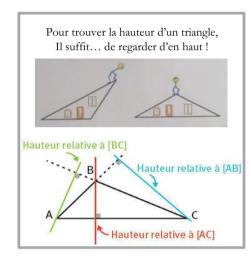

Le grand cône est un agrandissement du petit.

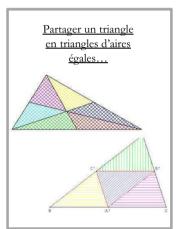

Echelle d'agrandissement : $\mathbf{k'} = \frac{\mathbf{SA}}{\mathbf{SA}}$ (k' > 1)

SA'B'C'D': réduction de SABCD

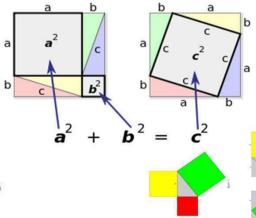

Echelle de réduction : $k = \frac{SA'}{SA} (k < 1)$


SABCD: agrandissement de SA'B'C'D' Echelle d'agrandissement : $\mathbf{k'} = \frac{\mathbf{SA}}{\mathbf{SA}}$ (k' > 1)





ET QUELQUES PROPRIETES...



Géométrie

LES MATHS Angles

Triangles

ES MATHS

FACILES

A - - - -

GEOMETRIE - ANGLES ET TRIANGLES 1.

ANGLES

Paires d'angles

Angle: partie du plan délimitée

par deux demi-droites de même origine. Demi-droites : côtés infinis de l'angle

Origine : sommet de l'angle.

<u>Unité de mesure des angles</u> : le degré (noté °). Instrument de mesure : le rapporteur.

MA BOITE A OUTILS MATHS-COLLEGE

Angles particuliers

_	mesure	angle	figure
	0°	nul	<u> </u>
	entre 0° et 90°	aigu	\forall
	90°	droit	
	entre 90° et 180°	obtus	J
•	180°	plat	
	entre 180° et 360°	rentrant	
	360°	plein	

Angles complémentaires :

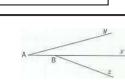
Deux angles dont la somme fait 90°

Angles supplémentaires :

Deux angles dont la somme fait 180°

Angles adjacents: Deux angles qui

- ont le même sommet,
- ont un côté commun.
- sont situés de part et d'autre de ce coté.



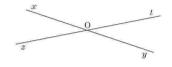
Quelle que soit la position des angles :

 $\dots + \dots = 180^{\circ}$

..... + =

"S"

MEMOTECHNIK


"S"

xAy et xBz ne sont pas adjacents

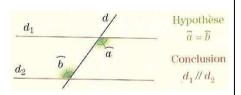
Angles opposés par le sommet : Deux angles qui

- ont le même sommet,
- leur<u>s côtés dans le prolongement l'un d</u>e l'autre.

=> Ils ont même mesure.

 \widehat{xOz} et \widehat{tOy} opposés par le sommet \widehat{xOt} et \widehat{zOy} opposés par le sommet

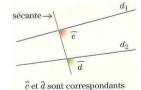
Angles alternes - internes :

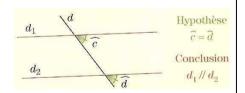

 d_1 et d_2 sont coupées par une droite sécante Δ .

- deux angles non-adjacents
- situés de part et d'autre de la droite Δ et en<u>tre</u> les droites d_1 et d_2 .

Les droites sont parallèles.

<=> Ils ont même mesure.

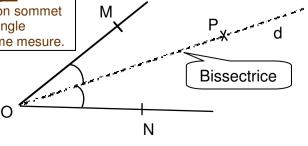

Angles correspondants:


 d_1 et d_2 sont coupées par une droite sécante Δ .

- deux angles non-adjacents
- situés d'un même côté de la droite Δ

l'un entre d₁ et d₂ et l'autre non.

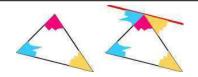
Les droites sont parallèles.
<=> Ils ont même mesure.



Bissectrice d'un angle :

Droite qui passe par son sommet et qui partage l'angle en deux angles de même mesure.

PROPRIETE

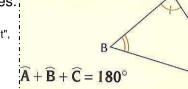

Chaque point de la bissectrice est équidistant des côtés de l'angle.

CONSTRUCTION

- * Tracer un arc de cercle qui coupe les côtés de l'angle en M et N.
- * Garder le même écartement de compas
- pour tracer deux arcs sécants de centres M et N.
- * La bissectrice est la droite passant par le sommet de l'angle et le point d'intersection des deux arcs de cercle P.

PROPRIETE : ANGLES D'UN TRIANGLE La somme des angles d'un triangle est égale à 180°.

TRIANGLES PROPRIETES DES TRIANGLES



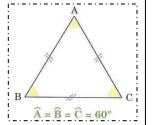
INEGALITE TRIANGULAIRE

La longueur de chaque côté est inférieure à la somme des longueurs des deux autres.

 $BC \leq BA + AC$

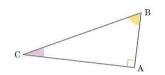
(Pour aller de B à C, la plus courte distance est "tout droit", c'est-à-dire en suivant le segment reliant B et C.)

Somme des angles d'un triangle

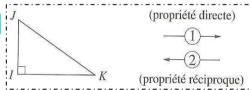

Elle est égale à 180°.

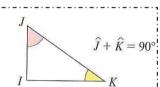
TRIANGLE EQUILATERAL

Triangle dont les trois côtés ont la même longueur.

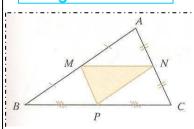

Propriété

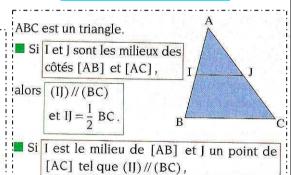
Les trois angles ont même mesure : $\frac{180^{\circ}}{2} = 60^{\circ}$



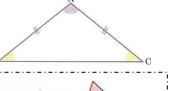

TRIANGLE RECTANGLE

Triangle qui a un angle droit. Le plus grand côté s'appelle l'hypoténuse.

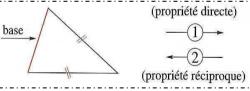

Propriété


THEOREMES DE 4e

Triangle des milieux

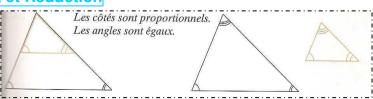

MNP est le triangle des milieux : - ses côtés sont parallèles à ceux de ABC: - ses angles sont égaux à ceux de ABC: - son périmètre est la moitié de celui de ABC ; - son aire est le quart de celle de ABC.

Théorème des milieux



TRIANGLE ISOCELE

Triangle qui a deux côtés de même longueur. Deux angles ont également même mesure.


Propriété

angles à la base

Agrandissement et Réduction

Le coefficient de proportionnalité entre les côtés des triangles est l'échelle.

alors J est le milieu de [AC]

Le triangle noir est un agrandissement du triangle rouge. Le triangle rouge est une réduction du triangle noir.

échelle > 1 <=>

0 < échelle < 1 <=>

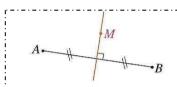
TRIANGLE RECTANGLE ISOCELE

Triangle qui a un angle droit et deux côtés de même longueur.

Propriété

Les deux angles à la base ont même mesure : $\frac{180^{\circ} - 90^{\circ}}{2} = 45^{\circ}$

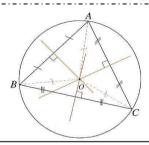
TRIANGLES DROITES REMARQUABLES DES TRIANGLES



Droite perpendiculaire au segment et passant par son milieu.

La droite △ est la médiatrice du segment [AB]

Propriété Equidistance


Chaque point de la médiatrice est à égale distance des extrémités du segment.

M est sur la médiatrice de AB

MA = MB

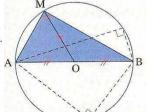
DANS UN TRIANGLE...

... Les trois médiatrices des côtés sont concourantes (se coupent en un point). Le point d'intersection est le **centre du cercle circonscrit** au triangle (qui passe par les sommets du triangle).

DANS UN TRIANGLE EQUILATERAL...

Les trois médianes, médiatrices, hauteurs, bissectrices sont confondues.

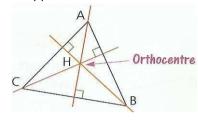
DANS UN TRIANGLE ISOCELE...


La médiane de la base, la médiatrice à la base, la hauteur relative à la base et la bissectrice de l'angle opposé sont confondues.

THEOREME DE 4^e

Triangle rectangle et cercle circonscrit

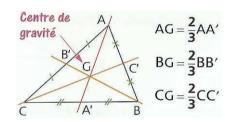
■ Si AMB est un triangle rectangle en M, alors M appartient au cercle de diamètre [AB].

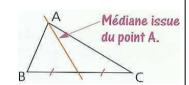

Si un point M, distinct de A et B, appartient au cercle de diamètre [AB], alors AMB est un triangle rectangle en M

O est le milieu de l'hypoténuse [AB]. OA = OB = OM

HAUTEUR ISSUE D'UN SOMMET

Droite qui passe par ce sommet et qui est perpendiculaire au côté opposé à ce sommet.

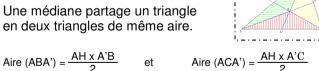


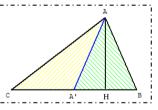

DANS UN TRIANGLE...

... Les trois hauteurs issues des sommets sont concourantes. Le point d'intersection est l'orthocentre du triangle.

MEDIANE ISSUE D'UN SOMMET

Droite qui passe par ce sommet et par le milieu du côté opposé à ce sommet.




DANS UN TRIANGLE...

... Les trois médianes issues des sommets sont concourantes. Le point d'intersection est le **centre de gravité** du triangle.

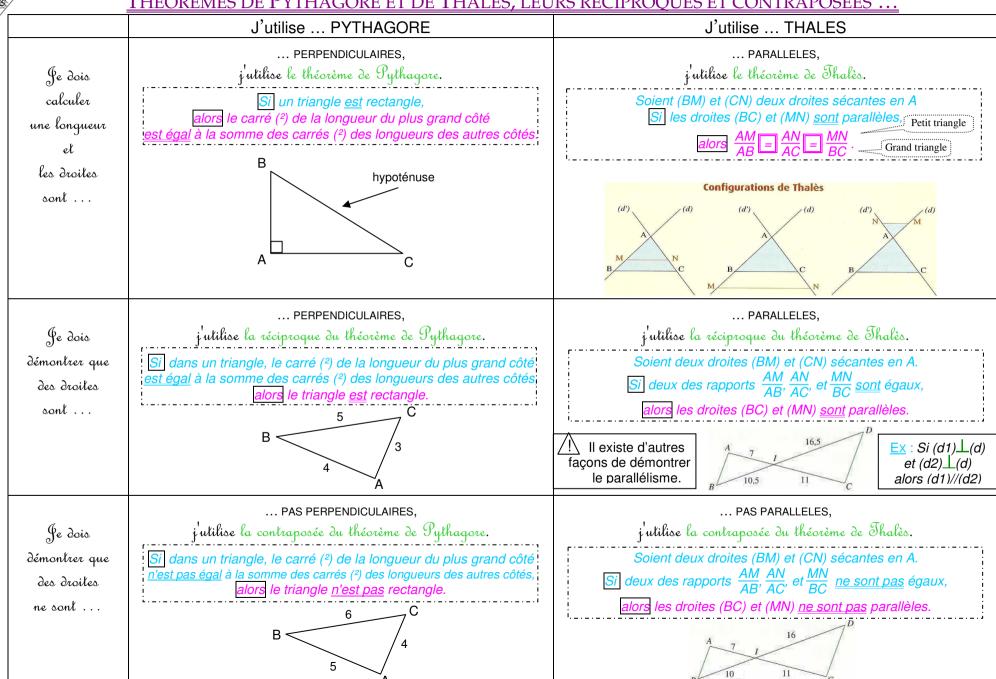
Propriété Partage d'un triangle

Une médiane partage un triangle en deux triangles de même aire.

Or (AA') étant médiane, on a A'C = A'B. Les aires des deux triangles sont donc égales. De même, les trois médianes partagent un triangle en six triangles d'aires égales.

BISSECTRICE D'UN ANGLE

Droite qui partage l'angle en deux angles adjacents de même mesure.

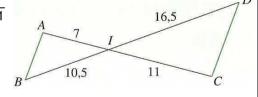

DANS UN TRIANGLE...

... Les trois bissectrices des angles sont concourantes. Le point d'intersection est le centre du cercle inscrit au triangle (le cercle tangent aux trois côtés du triangle).

LES MATHS

MA BOITE A OUTILS MATHS-COLLEGE

THEOREMES DE PYTHAGORE ET DE THALES, LEURS RECIPROQUES ET CONTRAPOSEES ...

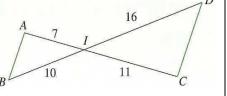


LES MATHS

REDACTION

Comment red	<u>iger : voici des exemples type .</u>	
	J'utilise PYTHAGORE	J'ı
Fe dois calculer une longueur el les droites	PERPENDICULAIRES, j'utilise le théorème de Pythagore. B hypoténuse 6 8	j'utilis Con (d') A N B
sont	Données : ABC est un triangle rectangle en A. Outil : D'après le théorème de Pythagore, Conclusion : On a BC ² = AB ² + AC ² BC ² = $6^2 + 8^2 = 36 + 64 = 100$ On a donc BC = $\sqrt{100} = 10$.	Données : (BM) et (CN) sor Outil : D'après le théorème Conclusion : On a AM AB
	PERPENDICULAIRES,	
Ge dois	j'utilise la réciproque du théorème de Pythagore.	j'utilise la réc
démontrer que des droites	Données: [BC] est le plus grand côté. BC $^2 = 5^2 = 25$ et AB $^2 + AC^2 = 4^2 + 3^2 = 25$ On constate que BC $^2 = AB^2 + AC^2$.	$\frac{\text{Données}}{\text{IA}} : \text{IAB et IDC sont} \\ \frac{\text{IA}}{\text{IC}} = \frac{7}{11} \text{ et } \frac{\text{IB}}{\text{ID}} = \frac{10.5}{16.5} = \frac{105}{165} =$
sont	Outil : D'après la <u>réciproque</u> du théorème de Pythagore,	On constate que $\frac{IA}{IC} = \frac{IB}{ID}$.
Ne pas oublier les autres outils!	Conclusion: Le triangle ABC est rectangle en A, les droites (AB) et (AC) sont perpendiculaires.	Outil: D'après la <u>réciproque</u> du théorème de Thalès, Conclusion: (AB) // (CD), le
dance dance:	PAS PERPENDICULAIRES,	
Je dois	j'utilise la contraposée du théorème de Pythagore.	j'utilise la con
démontrer que	Données : [BC] est le plus grand côté. $BC^2 = 6^2 = 36$ et $AB^2 + AC^2 = 5^2 + 4^2 = 25 + 16 = 41$	Données : IAB et IDC sont
des droiles	On constate que BC ² \neq AB ² + AC ² .	$\frac{IA}{IC} = \frac{7}{11}$ et $\frac{IB}{ID} = \frac{7}{11}$
ne sont	Outil :D'après la contraposée du théorème de Pythagore,	On constate que $\frac{IA}{IC}$ \neq $\frac{IB}{ID}$. Outil: D'après la contrapos
	Conclusion: Le triangle ABC <u>n'est pas</u> rectangle, les droites (AB) et (AC) <u>ne sont pas</u> perpendiculaires.	du théorème de Thalès, Conclusion : Les droites (A)

utilise ... THALES ... PARALLELES, ise le théorème de Thalès. nfigurations de Thalès ont sécantes en A, et (BC) //(MN). e de Thalès, ... PARALLELES, éciproque du théorème de Thalès. t des triangles dans la configuration de Thalès. $=\frac{7}{11}$

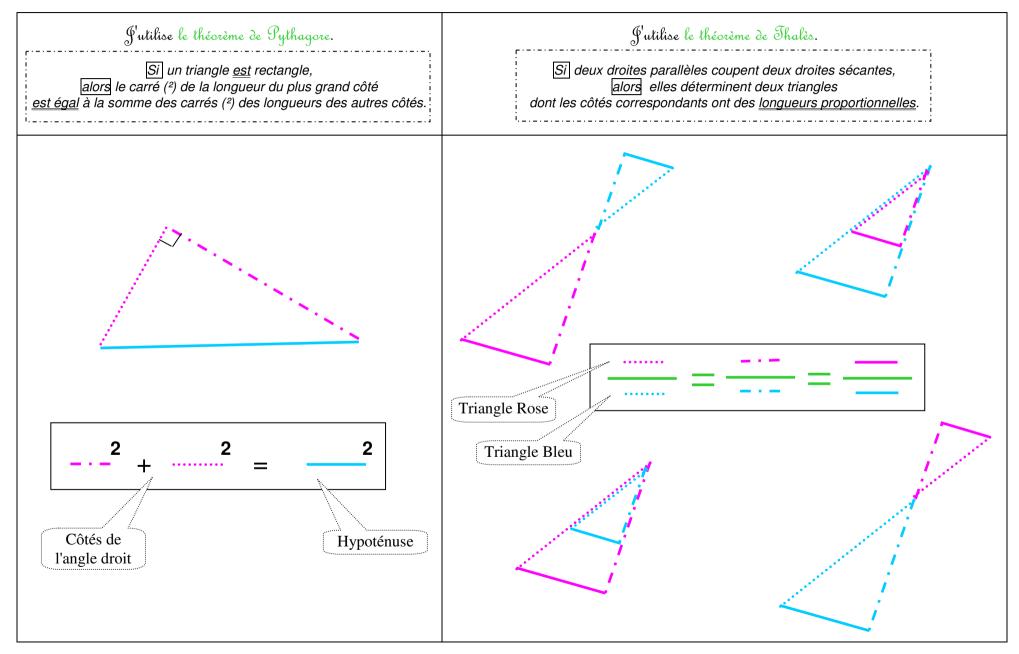

les droites (AB) et (CD) sont parallèles.

... PAS PARALLELES,

ontraposée du théorème de Thalès.

t des triangles dans la configuration de Thalès.

<u>sée</u>

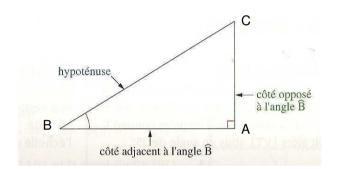


Conclusion: Les droites (AB) et (CD) ne sont pas parallèles

GEOMETRIE - ANGLES ET TRIANGLES 3.

METHODOLOGIE

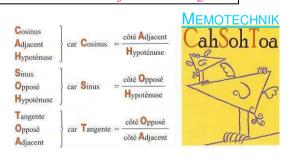
THEOREMES DE PYTHAGORE ET DE THALES Ne pas se tromper dans les égalités...

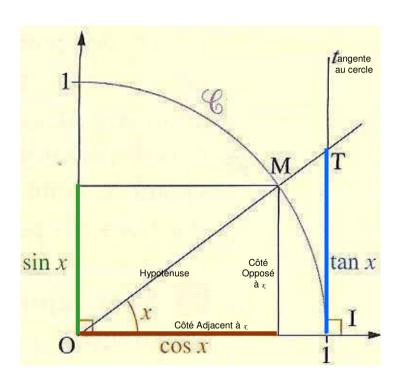

TRIGONOMETRIE

Trigone = triangle et

Métrie = mesure

Trigonométrie = "mesure des triangles"


DANS UN TRIANGLE RECTANGLE ...


$$\cos \widehat{ABC} = \frac{\text{côt\'e adjacent à l'angle } \widehat{B}}{\text{hypot\'enuse}} = \frac{AB}{BC}$$

$$\sin \widehat{ABC} = \frac{\text{côt\'e oppos\'e à l'angle } \widehat{B}}{\text{hypot\'enuse}} = \frac{AC}{BC}$$

$$\tan \widehat{ABC} = \frac{\text{côt\'e oppos\'e à l'angle } \widehat{B}}{\text{côt\'e adjacent à l'angle } \widehat{B}} = \frac{AC}{AB}$$

DANS LE QUART DE CERCLE TRIGONOMETRIQUE ...

En route vers la seconde... $\tan^{-1} x = \frac{1}{1} = \frac{\cos x}{1} = \frac{\cos x}{1}$

Si $x + y = 90^{\circ}$:

$$\sin y = \cos \chi \qquad \cos y = \sin \chi$$

 $\int \tan y = \frac{1}{\tan x} \left(\sin \tan x \neq 0 \right)$

côté adj

côté opp

PRINCIPALES PROPRIETES DES RELATIONS TRIGONOMETRIQUES ...

χ désigne la mesure d'un angle aigu.

Dans un triangle rectangle, l'hypoténuse est le plus grand des côtés, on a donc :

$$0 \le \cos x \le 1$$
 $0 \le \sin x \le 1$ $\tan x \ge 0$

On a également :

$$\frac{\sin \chi}{\cos \chi} = \frac{\frac{\text{côté opp}}{\text{hyp}}}{\frac{\text{côté adj}}{\text{hyp}}} = \frac{\text{côté opp}}{\text{côté adj}} = \tan \chi$$

$$\tan \chi = \frac{\sin \chi}{\cos \chi}$$

Calculons:

$$\cos^2 \chi + \sin^2 \chi = (\frac{\text{côté adj}}{\text{hyp}})^2 + (\frac{\text{côté opp}}{\text{hyp}})^2$$

$$= \frac{\text{côté adj}^2}{\text{hyp}^2} + \frac{\text{côté opp}^2}{\text{hyp}^2} = \frac{\text{côté adj}^2 + \text{côté opp}^2}{\text{hyp}^2}$$
Le triangle est rectangle, d'après le théorème de Pythagore : côté adj 2 + côté opp 2 = hypoténuse 2

On a donc: $\frac{\text{côté adj}^2 + \text{côté opp}^2}{\text{hyp}^2} = \frac{\text{hyp}^2}{\text{hyp}^2} = 1$

$$\cos^2 \chi + \sin^2 \chi = 1$$

Valeurs usuelles:

valeurs us	<u>suciles</u>				
Angle	0°	30°	45°	60°	90°
Cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Tangente	0	$\frac{\sqrt{3}}{3}$	1	√3	\times

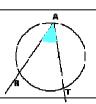
Les calculs de cosinus, sinus et tangente se font à la calculatrice.

// Vérifier qu'elle est en mode degré.

Si je connais l'angle, j'utilise les touches cos, sin, tan.

Si je cherche l'angle, j'utilise les touches arccos (ou cos⁻¹ ou acs), arcsin (ou sin⁻¹ ou asn), arctan (ou tan⁻¹ ou atn)

GEOMETRIE - ANGLES ET TRIANGLES 5.


MA BOITE A OUTILS MATHS-COLLEGE

ANGLES INSCRITS ET ANGLES AU CENTRE

Angle inscrit dans un cercle

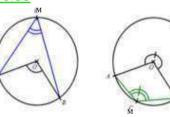
- son sommet est sur le cercle,
- ses côtés coupent le cercle.

Ex: \widehat{TAR} est l'angle inscrit qui intercepte l'arc RT.

Angle au centre

- son sommet est le centre du cercle.

Ex: TOR est l'angle au centre qui intercepte le petit arc RT.


TOR est l'angle au centre qui intercepte le grand arc RT.

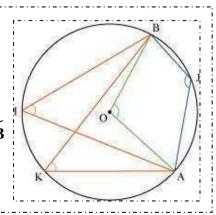
Angle inscrit et Angle au centre associés

On dit qu'ils sont associés s'ils interceptent le même arc. (c'est-à-dire s'ils « regardent dans le même sens ».)

Remarque:

 $\widehat{AIB} = \widehat{AKB} = \frac{1}{2} \widehat{AOB}$

 $\widehat{AJB} = \frac{1}{2} \widehat{AOB}$

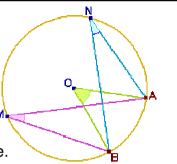

III ATB ≠ AJB III

Ils n'interceptent pas le même arc AB.

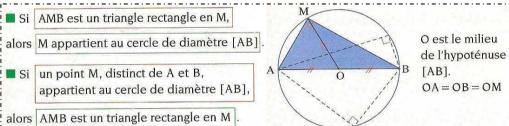
$$\widehat{AIB} + \widehat{AJB} = \frac{1}{2}\widehat{AOB} + \frac{1}{2}\widehat{AOB}$$

 $= \frac{1}{2} (AOB + AOB)$ = $\frac{1}{2} \times 360^{\circ} = 180^{\circ}$

AIB et AJB sont supplémentaires.

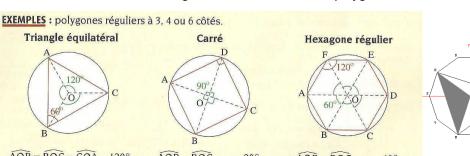


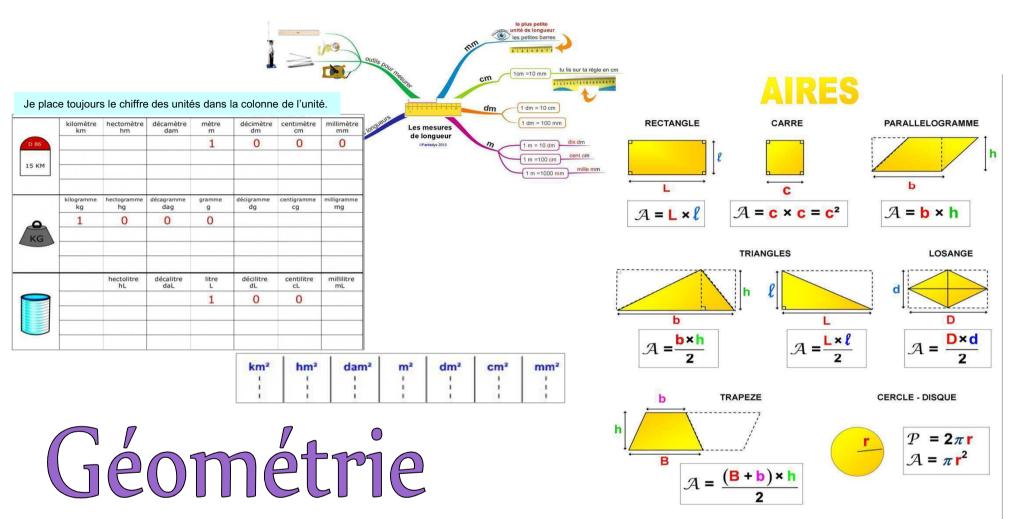
Théorème : $\widehat{AMB} = \frac{1}{2} \widehat{AOB}$


La mesure d'un angle inscrit dans un cercle est égale à la moitié de la mesure de l'angle au centre associé.

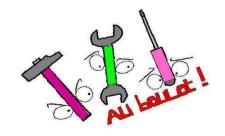
Conséquence : $\widehat{AMB} = \frac{1}{2} \widehat{AOB} = \widehat{ANB}$

Deux angles inscrits dans un cercle qui interceptent le même arc ont même mesure.


Exemple d'application : Polygones réguliers


Un polygone régulier à n côtés (tous les côtés et tous les angles ont même mesure) s'inscrit dans un cercle circonscrit. Son centre O s'appelle le centre du polygone.

A et B, deux sommets consécutifs, forment donc un angle au centre de mesure $\frac{360^{\circ}}{n}$.


On peut donc calculer ainsi la mesure des angles du polygone.

La rotation de centre O et d'angle \widehat{AOB} donne le même polygone.

MESURES: UNITES ET CONVERTIONS

Unités de Longueur, Masse, Capacité, Aire et Temps

M	//ULTIF	PLES DE	UNITE	SOUS-MULTIPLES DE L'UNITE					
			km	hm	dam	mètre	dm	cm	mm
12 3 4 5 6	7 8	9 0							
t	q	•	kg	hg	dag	G ramme	dg	cg	mg
110 g 500 y 2nd	n g								
				hL	daL	Litre	d	cL	mL
	900 400 300 200								

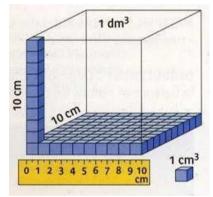
>	km ²	hm ²	dam ²	m^2	dm ²	cm ²	mm ²
<u>o</u>		ha	are	ca			
u u							
S							
			;	;			

M M	lultiples de l'un	ité	UNITE	Sous-multiples de l'unité				
jour	heure	minute	Seconde	dixième de seconde	centième de seconde	millième de seconde		
1j = 24 h	1h = 60min	1min = 60s	S	0,1 s	0,01 s	0,001 s		

1 an = 12 mois = 365 jours ¼ 1,25 h = 75 min ≠ 1h 25min 1

POUR CHAQUE UNITE...

Les multiples sont : le kilo..., l'hecto..., le déca... . Les sous-multiples sont : le déci..., le centi..., le milli...


Unités de Volume

Les unités légales des volumes sont celles du système métrique, c'est à dire celles qui utilisent le mètre pour référence. L'unité de volume légale est le <u>mètre cube</u> (m³) (c'est-à-dire le volume d'un cube de 1 m sur 1 m).

Nous avons représenté les cm³ qui se trouvent à l'intérieur d' 1 dm³.

$$1 \text{ dm}^3 = 1 000 \text{ cm}^3$$

On peut utiliser un tableau de conversions. On le remplira donc en mettant 3 chiffres par colonne.

Pour passer d'une unité de volume à une unité de capacité.

On remplit 1 dm³ avec de l'eau. On constate que 1 dm³ = 1 L

1000	1 dm ³	k	m ³	hm ^s	3	C	lam	3	m ³			dm ³			cm ³		n	nm ³	3
											hL	daL	L	dL	сL	mL			
					!				3	8	4	5	6	0	0	0	:		
					! !														
			: : :		! ! !			 							 			:	

 $\underline{\text{Ex}}$: 38,456 m³ = 3 845,6 daL = 38 456 000 cm³ On utilise rarement les multiples du m³ dans la vie courante.

Par exemple, il y a 1,4 milliards de km³ d'eau sur terre.

LES MATHS

FACILES

MA BOITE A OUTILS MATHS-COLLEGE

<u></u>		_ AIKES ETT EKHVIETN	
Carré	Rectangle	Triangle rectangle	Triangle
C	L	Hypoténuse	Côté A Hantenz
Périmètre = 4 × Côté	Périmètre = 2 × (Longueur + largeur)	Périmètre = Hypoténuse + Longueur + largeur	Périmètre = Côté 1 + Côté 2 + Côté 3
Aire = Côté × Côté	Aire = Longueur × largeur	Aire = $\frac{\text{Longueur} \times \text{largeur}}{2}$	Aire = $\frac{\text{Côt\'e} \times \text{Hauteur}}{2}$
Parallélogramme	Trapèze	Losange	Cercle
h c	hauteur grande base	$\frac{D \times d}{2}$	R
Périmètre = 2 x (Côté 1 + Côté 2)	Périmètre = Côté 1 + Côté 2 + Côté 3 + Côté 4	Périmètre = 4 x Côté	Périmètre = $2 \times \pi \times \text{Rayon}$ Périmètre = $\pi \times \text{Diamètre}$ avec $\pi \approx 3,14$
Aire =	Aire =	Aire =	Aire = $\pi \times \text{Rayon} \times \text{Rayon}$
Côté x Hauteur Correspondante	(Petite Base + Grande Base) x Hauteur 2	Petite Diagonale x Grande Diagonale 2	ou Aire = $\pi \times \text{Rayon}^2$ avec $\pi \approx 3,14$

Périmètre d'une figure fermée :

longueur de son contour = somme des longueurs de tous ses côtés

<u>Aire d'une figure</u> : mesure de sa surface

Volume d'un solide : mesure de son espace intérieur

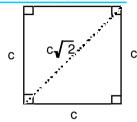
!!! Attention !!!

Les calculs se font dans une unité donnée.

Les longueurs doivent donc toutes être exprimées dans la même unité.

NB: π ≈ 3,141592
est représenté
par une lettre grecque
qui se prononce 'pi'.
π est un nombre particulier
avec un nombre
de décimales infini.

Le nombre Pi est désigné par la lettre grecque π car ce nombre n'a pas d'écriture décimale exacte.

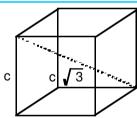

La touche π de la calculatrice donne toujours une valeur approchée de ce nombre

Le produit du nombre r par lui-même s'appelle le carré du nombre r, et on le note r^2 .

GEOMETRIE ET RACINES CARREES

Quelques calculs de longueurs importants en géométrie...

DIAGONALE DU CARRE

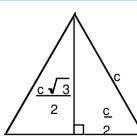


$d = c\sqrt{2}$

D'après le théorème de Pythagore,

diagonale
2
 = $c^2 + c^2$
= $2 c^2$
diagonale = $\sqrt{2c^2}$
= $\sqrt{2} \sqrt{c^2}$
= $c \sqrt{2}$

DIAGONALE INTERIEURE DU CUBE



$$D = c\sqrt{3}$$

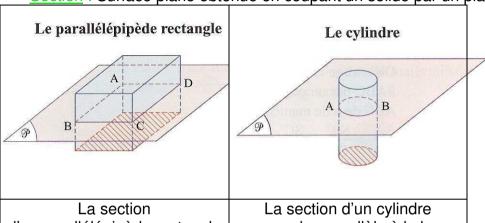
D'après le théorème de Pythagore,

diagonale ² =
$$c^2 + (c\sqrt{2})^2$$

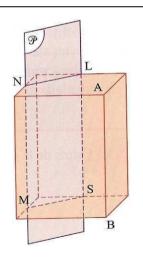
= $c^2 + 2c^2 = 3c^2$
diagonale = $\sqrt{3}c^2$
= $\sqrt{3}\sqrt{c^2}$
= $c\sqrt{3}$

HAUTEUR DU TRIANGLE EQUILATERAL

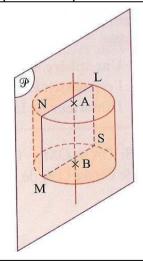
$$h = \frac{c\sqrt{3}}{2}$$

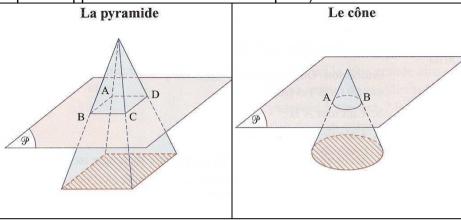

D'après le théorème de Pythagore,

hauteur
$$^2 + \frac{c}{2}^2 = c^2$$
hauteur $^2 + \frac{c^2}{4} = c^2$
hauteur $^2 = c^2 - \frac{c^2}{4} = \frac{3c^2}{4}$
hauteur $^2 = \sqrt{\frac{3c^2}{4}}$


$$= \frac{\sqrt{c^2}\sqrt{3}}{\sqrt{4}} =$$

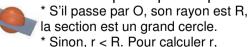
SECTIONS PAR UN PLAN


Section: Surface plane obtenue en coupant un solide par un plan. (les points appartiennent au solide et au plan.)


d'un parallélépipède rectangle par un plan parallèle à la base est délimitée par un rectangle. La section d'un cylindre par un plan parallèle à la base (et perpendiculaire à l'axe) est délimitée par un cercle (disque identique à la base).

La section d'un parallélépipède rectangle par un plan parallèle à une arête est délimitée par un rectangle.

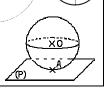
La section
d'un cylindre
par un plan
parallèle à l'axe
est délimitée par un rectangle.

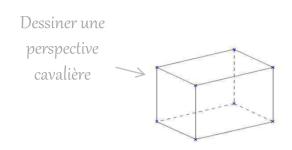


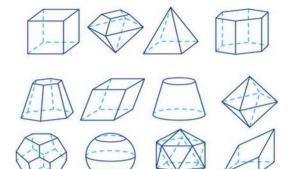
La section d'une pyramide ou d'un cône par un plan parallèle à la base est de même nature que la base polygonale ou circulaire.

C'est une réduction de la base, on utilise le Théorème de Thalès pour calculer les dimensions.

La section d'une sphère par un plan est un cercle.

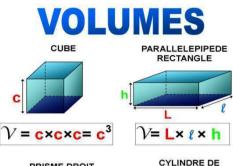


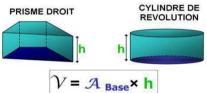

on utilise le Théorème de Pythagore : $OH^2 + r^2 = R^2$, donc $r = \sqrt{(R^2 - OH^2)}$

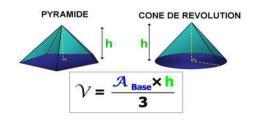


Cas particuliers :

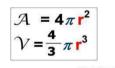
* Si OH = R, le plan est tangent à la sphère le plan et la sphère ont un seul point commun, A. * Si OH > R. le plan ne coupe pas la sphère.



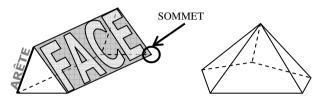

km ³		hm³		dam³		m ³		dm ³			cm ³			mm ³				
										kl	he	dal	l	dℓ	cl	ml		ï
										2	5	7	0					



Géométrie

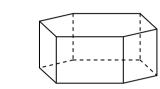


SPHERE-BOULE


MA BOITE A OUTILS MATHS-COLLEGE ES MATHS

SOLIDES ET PATRONS

Solide et Volume


Solide: Un solide est un objet de l'espace en 3 dimensions (« en relief »).

Nous allons étudier les polyèdres, conçus par un assemblage de polygones.

5 faces et 6 sommets 9 arêtes (dont 3 cachées)

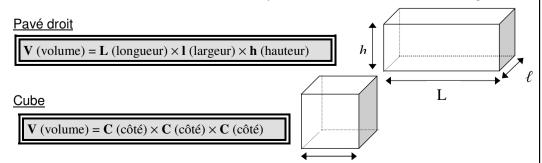
FACILES

10 arêtes (dont 3 cachées)

8 faces et 12 sommets 18 arêtes (dont 5 cachées)

Un solide est impossible à dessiner sur une feuille (surface plane en deux dimensions). On le représente sur un plan en utilisant le dessin en perspective.

6 faces et 6 sommets


C'est une perspective cavalière (perspective particulière) si :

- toutes les arêtes parallèles et de même mesure sont représentées par des segments parallèles et de même mesure.
- les faces avant et arrière représentent la réalité,
- les autres faces sont déformées par la perspective,
- les arêtes cachées sont représentées par des pointillés.

Volume : Le volume d'un solide est la mesure de son espace intérieur.

On peut calculer les volumes de certains solides à l'aide de formules :

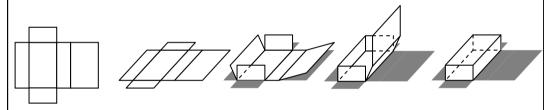
Ex :Le volume d'un pavé droit se calcule en multipliant les trois dimensions de l'objet. III Attention, les dimensions doivent être exprimées dans la même unité de longueur. !!!

Solide particulier : le parallélépipède rectangle

Parallélépipède rectangle (ou pavé droit)

Un parallélépipède rectangle est un solide dont toutes les faces sont des rectangles.

Construction


Un parallélépipède rectangle a 6 faces, 8 sommets et 12 arêtes.

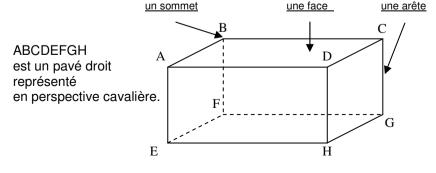
Cas particulier: Cube

Un parallélépipède rectangle dont toutes les faces sont des carrés est un cube.

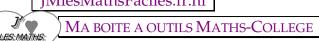
Patron

Le patron est un dessin en un seul morceau qui permet de construire un solide.

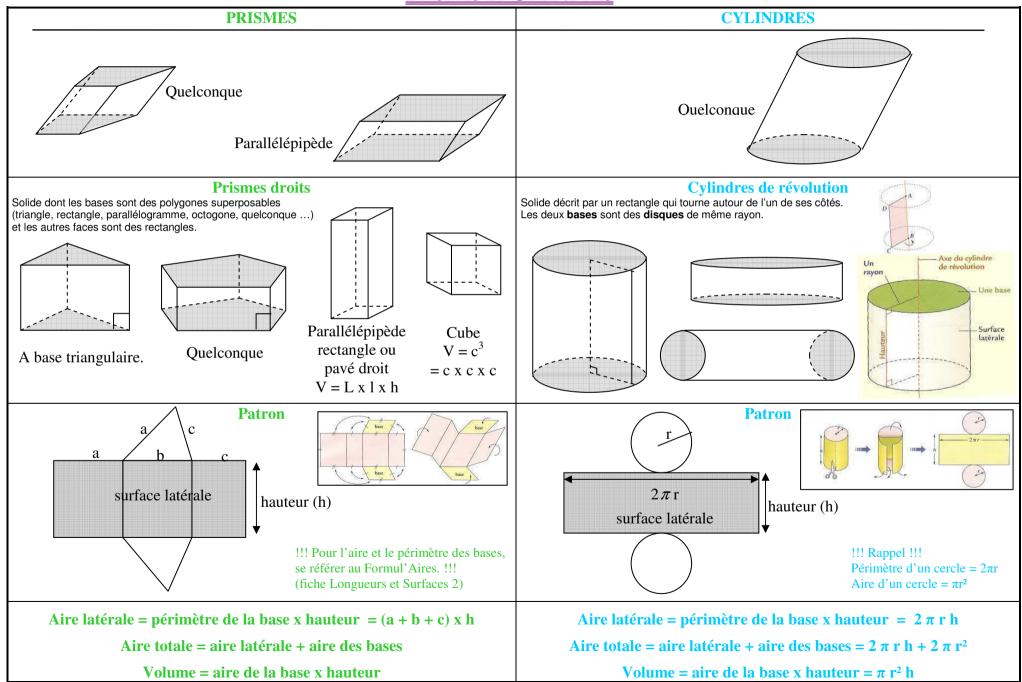
1. Le patron du pavé droit


2. On découpe (vue en perspective)

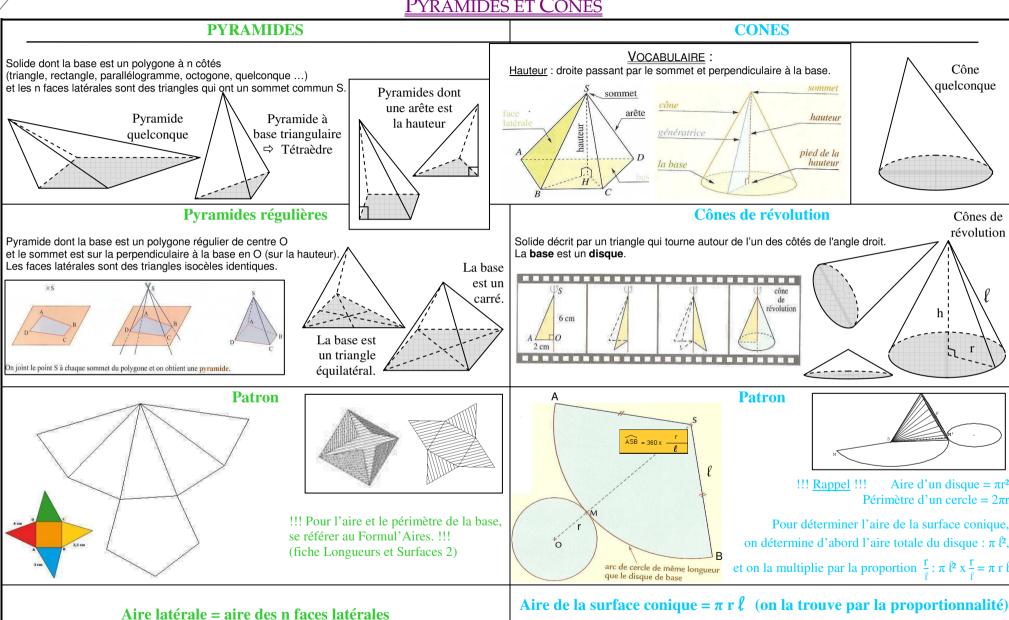
3. On plie


4. On colle les arêtes

5. On obtient le pavé droit.


Perspective cavalière

FACILES


PRISMES ET CYLINDRES

FACILES

MA BOITE A OUTILS MATHS-COLLEGE LES MATHS

PYRAMIDES ET CONES

Aire totale = aire latérale + aire de la base Volume = $\frac{1}{3}$ aire de la base x hauteur

Aire de la surface conique = π r ℓ (on la trouve par la proportionnalité)

Aire totale = aire de la surface conique + aire de la base = π r ℓ + π r²

Volume = $\frac{1}{3}$ aire de la base x hauteur = $\frac{1}{3}$ π r² h

L E

S

D

R 0

T

S

V

= В

Η

L E S

P 0

N T

U

S

V

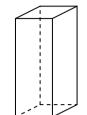
=

 $\frac{1}{3}$

В

X

Η

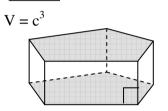

MA BOITE A OUTILS MATHS-COLLEGE

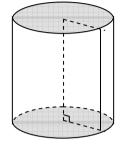
FORMUL'VOLUMES

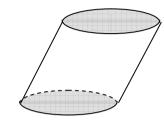
GEOMETRIE - ESPACE 4.

SPHERES ET BOULES

BASE POLYGONALE

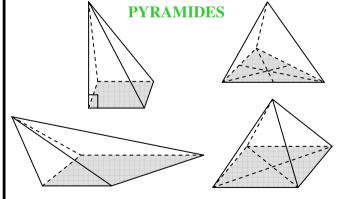




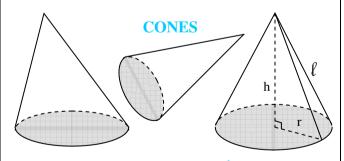


Aire latérale = périmètre de la base x hauteur Aire totale = aire latérale + aire des bases Volume = aire de la base x hauteur

PRISMES CYLINDRES



Aire latérale = périmètre de la base x hauteur $= 2 \pi r x h$


BASE CIRCULAIRE

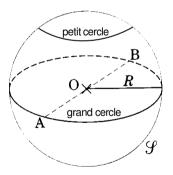
Aire totale = aire latérale + aire des bases $= 2 \pi r x h + 2 x \pi r^2$

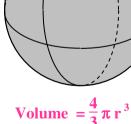
Volume = aire de la base x hauteur = π r² h

Aire latérale = aire des n faces latérales Aire totale = aire latérale + aire de la base Volume = $\frac{1}{2}$ aire de la base x hauteur

Aire de la surface conique = π r ℓ (proportionnalité)

Aire totale = aire surface conique + aire base
=
$$\pi r \ell + \pi r^2$$


Volume =
$$\frac{1}{3}$$
 aire de la base x hauteur = $\frac{1}{3} \pi r^2 h$


SPHERES ET BOULES

Sphère de centre O et de ravon R: Surface constituée de tous les points de l'espace dont la distance à O est égale à R. (ensemble des points M de l'espace tels que OM = R)

Boule de centre O et de ravon R: Solide constitué de tous les points de l'espace dont la distance à O est inférieure ou égale à R. (ensemble des points M de l'espace tels que $OM \leq R$)

La boule est pleine, la sphère est creuse. La sphère est l'enveloppe de la boule.

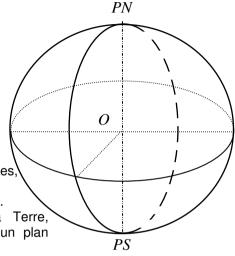
Surface = $4 \pi r^2$

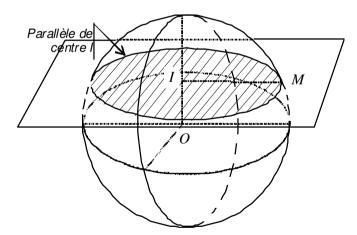
= 4 x surface d'un grand cercle

 $=\frac{1}{2}$ x surface x rayon

Remarques

On dit que A et B sont diamétralement opposés. Un grand cercle est un cercle de points dont le centre est celui de la sphère. !!! On ne peut pas construire le patron d'une sphère. !!!




LA SPHERE TERRESTRE

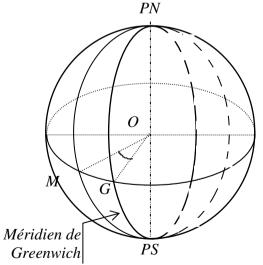
La Terre est une sphère (légèrement aplatie aux pôles) dont le <u>rayon est arrondi à 6 400 km.</u> Le segment formé par les deux pôles est un diamètre de la Terre.

L'<u>équateur</u> est un grand cercle de la Terre. Sa longueur se calcule donc par la formule : $L = 2\pi R$, où R est le rayon de la Terre. On obtient : $L \approx 2 \times \pi \times 6$ 400 \approx 40 000 km.

Tous les <u>méridiens</u> sont d'autres grands cercles, passant eux par les deux pôles, et leur longueur est aussi d'environ 40 000 km. Un <u>parallèle</u> est un petit disque de la Terre, déterminé par la section de la Terre par un plan parallèle au plan de l'équateur.



La longueur d'un parallèle dépend de son rayon. Ce rayon dépend de la longueur séparant le centre du parallèle du centre de la Terre. Il peut se calculer grâce au théorème de Pythagore.


Mais les parallèles ont été repérés d'une autre manière. C'est l'angle formé par un point de l'équateur, le centre de la Terre et un point du parallèle qui va permettre de déterminer le parallèle. Cet angle porte le nom de <u>latitude</u>. Plaçons-nous dans le plan contenant les points O, I et M. M est un point du parallèle de centre I. La latitude de ce parallèle est l'angle α, formé par les points A, O et M.

Les angles IMO et MOA sont alternes - internes.
Les droites (IM) et (AO) étant parallèles, les angles sont égaux.
Donc dans le triangle IMO, on utilise le cosinus et on obtient **r = R x cos α**.

La <u>latitude</u> d'un parallèle est un angle compris entre 0° et 90°. On ajoute une indication de sens pour dire si le parallèle est entre l'équateur et le pôle Nord, ou bien entre l'équateur et le pôle Sud.

 \underline{Ex} : On dira donc d'un point qu'il a une latitude de 42 °N ou de 38 °S.

Coordonnées géographiques :

Pour repérer un point sur la Terre, on le situe à la fois sur un méridien et sur un parallèle.

Chaque méridien est repéré par rapport à un méridien de référence: le méridien de Greenwich

M est le point d'un méridien situé sur l'équateur, et G le point du méridien de Greenwich situé sur l'équateur.

La longitude du méridien passant par M est l'angle GOM.

La <u>longitude</u> d'un méridien est un angle compris entre 0° et 180° On ajoute une indication de sens pour dire si le méridien est à l'Est ou à l'Ouest du méridien de Greenwich.

 \underline{Ex} : On dira d'un point qu'il a une longitude de 42 $^{\circ}$ E ou de 138 $^{\circ}$ O.